Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents
Annals of mathematics, Tome 167 (2008) no. 2, pp. 643-680.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that for any $s>0$ the majority of $C^s$ linear cocycles over any hyperbolic (uniformly or not) ergodic transformation exhibit some nonzero Lyapunov exponent: this is true for an open dense subset of cocycles and, actually, vanishing Lyapunov exponents correspond to codimension-$\infty$. This open dense subset is described in terms of a geometric condition involving the behavior of the cocycle over certain heteroclinic orbits of the transformation.
DOI : 10.4007/annals.2008.167.643

Marcelo Viana 1

1 IMPA <br/>22460-320 Rio de Janeiro<br/> Brazil
@article{10_4007_annals_2008_167_643,
     author = {Marcelo Viana},
     title = {Almost all cocycles over any hyperbolic system have nonvanishing {Lyapunov} exponents},
     journal = {Annals of mathematics},
     pages = {643--680},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.167.643},
     mrnumber = {2415384},
     zbl = {1173.37019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.643/}
}
TY  - JOUR
AU  - Marcelo Viana
TI  - Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents
JO  - Annals of mathematics
PY  - 2008
SP  - 643
EP  - 680
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.643/
DO  - 10.4007/annals.2008.167.643
LA  - en
ID  - 10_4007_annals_2008_167_643
ER  - 
%0 Journal Article
%A Marcelo Viana
%T Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents
%J Annals of mathematics
%D 2008
%P 643-680
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.643/
%R 10.4007/annals.2008.167.643
%G en
%F 10_4007_annals_2008_167_643
Marcelo Viana. Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Annals of mathematics, Tome 167 (2008) no. 2, pp. 643-680. doi : 10.4007/annals.2008.167.643. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.643/

Cité par Sources :