Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
Annals of mathematics, Tome 167 (2008) no. 2, pp. 625-642.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that Cayley graphs of $\mathrm{SL}_2(\mathbb{F}_p)$ are expanders with respect to the projection of any fixed elements in $\mathrm{SL}(2, \mathbb{Z})$ generating a non-elementary subgroup, and with respect to generators chosen at random in $\mathrm{SL}_2(\mathbb{F}_p)$.
DOI : 10.4007/annals.2008.167.625

Jean Bourgain 1 ; Alex Gamburd 2

1 School of Mathematics<br/>Institute for Advanced Study<br/>Princeton, NJ 08540<br/>United States
2 Department of Mathematics<br/>University of California at Santa Cruz<br/>Santa Cruz, CA 95064<br/>United States
@article{10_4007_annals_2008_167_625,
     author = {Jean Bourgain and Alex Gamburd},
     title = {Uniform expansion bounds for {Cayley} graphs of $\mathrm{SL}_2(F_p)$},
     journal = {Annals of mathematics},
     pages = {625--642},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.167.625},
     mrnumber = {2415383},
     zbl = {1216.20042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Alex Gamburd
TI  - Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
JO  - Annals of mathematics
PY  - 2008
SP  - 625
EP  - 642
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/
DO  - 10.4007/annals.2008.167.625
LA  - en
ID  - 10_4007_annals_2008_167_625
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
%J Annals of mathematics
%D 2008
%P 625-642
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/
%R 10.4007/annals.2008.167.625
%G en
%F 10_4007_annals_2008_167_625
Jean Bourgain; Alex Gamburd. Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$. Annals of mathematics, Tome 167 (2008) no. 2, pp. 625-642. doi : 10.4007/annals.2008.167.625. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/

Cité par Sources :