Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$
Annals of mathematics, Tome 167 (2008) no. 2, pp. 601-623.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that every subset of $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$ grows rapidly when it acts on itself by the group operation. It follows readily that, for every set of generators $A$ of $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$, every element of $\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})$ can be expressed as a product of at most $O((\log p)^c)$ elements of $A \cup A^{-1}$, where $c$ and the implied constant are absolute.
DOI : 10.4007/annals.2008.167.601

Harald A. Helfgott 1

1 Department of Mathematics<br/>University of Bristol<br/>Bristol BS8 1TW<br/>United Kingdom
@article{10_4007_annals_2008_167_601,
     author = {Harald A. Helfgott},
     title = {Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$},
     journal = {Annals of mathematics},
     pages = {601--623},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.167.601},
     mrnumber = {2415382},
     zbl = {1213.20045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.601/}
}
TY  - JOUR
AU  - Harald A. Helfgott
TI  - Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$
JO  - Annals of mathematics
PY  - 2008
SP  - 601
EP  - 623
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.601/
DO  - 10.4007/annals.2008.167.601
LA  - en
ID  - 10_4007_annals_2008_167_601
ER  - 
%0 Journal Article
%A Harald A. Helfgott
%T Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$
%J Annals of mathematics
%D 2008
%P 601-623
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.601/
%R 10.4007/annals.2008.167.601
%G en
%F 10_4007_annals_2008_167_601
Harald A. Helfgott. Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$. Annals of mathematics, Tome 167 (2008) no. 2, pp. 601-623. doi : 10.4007/annals.2008.167.601. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.601/

Cité par Sources :