The Poincaré inequality is an open ended condition
Annals of mathematics, Tome 167 (2008) no. 2, pp. 575-599.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $p >1$ and let $(X,d,\mu)$ be a complete metric measure space with $\mu$ Borel and doubling that admits a $(1,p)$-Poincaré inequality. Then there exists $\varepsilon >0$ such that $(X,d,\mu)$ admits a $(1,q)$-Poincaré inequality for every $q >p – \varepsilon$, quantitatively.
DOI : 10.4007/annals.2008.167.575

Stephen Keith 1 ; Xiao Zhong 2

1 Mathematical Sciences Institute<br/>Australian National University<br/>Canberra 0200<br/>Australia
2 Department of Mathematics and Statistics<br/>University of Jyväskylä<br/>Jyväskylä<br/>Finland
@article{10_4007_annals_2008_167_575,
     author = {Stephen Keith and Xiao Zhong},
     title = {The {Poincar\'e} inequality is an open ended condition},
     journal = {Annals of mathematics},
     pages = {575--599},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.167.575},
     mrnumber = {2415381},
     zbl = {1180.46025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.575/}
}
TY  - JOUR
AU  - Stephen Keith
AU  - Xiao Zhong
TI  - The Poincaré inequality is an open ended condition
JO  - Annals of mathematics
PY  - 2008
SP  - 575
EP  - 599
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.575/
DO  - 10.4007/annals.2008.167.575
LA  - en
ID  - 10_4007_annals_2008_167_575
ER  - 
%0 Journal Article
%A Stephen Keith
%A Xiao Zhong
%T The Poincaré inequality is an open ended condition
%J Annals of mathematics
%D 2008
%P 575-599
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.575/
%R 10.4007/annals.2008.167.575
%G en
%F 10_4007_annals_2008_167_575
Stephen Keith; Xiao Zhong. The Poincaré inequality is an open ended condition. Annals of mathematics, Tome 167 (2008) no. 2, pp. 575-599. doi : 10.4007/annals.2008.167.575. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.575/

Cité par Sources :