Dimension and rank for mapping class groups
Annals of mathematics, Tome 167 (2008) no. 3, pp. 1055-1077.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study the large scale geometry of the mapping class group, $\mathcal{MCG}(S)$. Our main result is that for any asymptotic cone of $\mathcal{MCG}(S)$, the maximal dimension of locally compact subsets coincides with the maximal rank of free abelian subgroups of $\mathcal{MCG}(S)$. An application is a proof of Brock-Farb’s Rank Conjecture which asserts that $\mathcal{MCG}(S)$ has quasi-flats of dimension $N$ if and only if it has a rank $N$ free abelian subgroup. (Hamenstadt has also given a proof of this conjecture, using different methods.) We also compute the maximum dimension of quasi-flats in Teichmuller space with the Weil-Petersson metric.
DOI : 10.4007/annals.2008.167.1055

Jason A. Behrstock 1 ; Yair N. Minsky 2

1 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States
2 Department of Mathematics, Yale University, New Haven, CT 06520, United States
@article{10_4007_annals_2008_167_1055,
     author = {Jason A. Behrstock and Yair N. Minsky},
     title = {Dimension and rank for mapping class groups},
     journal = {Annals of mathematics},
     pages = {1055--1077},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2008},
     doi = {10.4007/annals.2008.167.1055},
     mrnumber = {2415393},
     zbl = {05578711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1055/}
}
TY  - JOUR
AU  - Jason A. Behrstock
AU  - Yair N. Minsky
TI  - Dimension and rank for mapping class groups
JO  - Annals of mathematics
PY  - 2008
SP  - 1055
EP  - 1077
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1055/
DO  - 10.4007/annals.2008.167.1055
LA  - en
ID  - 10_4007_annals_2008_167_1055
ER  - 
%0 Journal Article
%A Jason A. Behrstock
%A Yair N. Minsky
%T Dimension and rank for mapping class groups
%J Annals of mathematics
%D 2008
%P 1055-1077
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1055/
%R 10.4007/annals.2008.167.1055
%G en
%F 10_4007_annals_2008_167_1055
Jason A. Behrstock; Yair N. Minsky. Dimension and rank for mapping class groups. Annals of mathematics, Tome 167 (2008) no. 3, pp. 1055-1077. doi : 10.4007/annals.2008.167.1055. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1055/

Cité par Sources :