On the homology of algebras of Whitney functions over subanalytic sets
Annals of mathematics, Tome 167 (2008) no. 1, pp. 1-52.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this article we study several homology theories of the algebra $\mathcal{E}^\infty (X)$ of Whitney functions over a subanalytic set $X\subset\mathbb{R}^n$ with a view towards noncommutative geometry. Using a localization method going back to Teleman we prove a Hochschild-Kostant-Rosenberg type theorem for $\mathcal{E}^\infty (X)$, when $X$ is a regular subset of $\mathbb{R}^n$ having regularly situated diagonals. This includes the case of subanalytic $X$. We also compute the Hochschild cohomology of $\mathcal{E}^\infty (X)$ for a regular set with regularly situated diagonals and derive the cyclic and periodic cyclic theories. It is shown that the periodic cyclic homology coincides with the de Rham cohomology, thus generalizing a result of Feigin-Tsygan. Motivated by the algebraic de Rham theory of Grothendieck we finally prove that for subanalytic sets the de Rham cohomology of $\mathcal{E}^\infty (X)$ coincides with the singular cohomology. For the proof of this result we introduce the notion of a bimeromorphic subanalytic triangulation and show that every bounded subanalytic set admits such a triangulation.
DOI : 10.4007/annals.2008.167.1

Jean-Paul Brasselet 1 ; Markus J. Pflaum 2

1 Institut de Mathématiques de Luminy<br/>13288 Marseille<br/>France
2 Department of Mathematics<br/>University of Colorado<br/>Boulder, CO 80309<br/>United States
@article{10_4007_annals_2008_167_1,
     author = {Jean-Paul Brasselet and Markus J. Pflaum},
     title = {On the homology of algebras of {Whitney} functions over subanalytic sets},
     journal = {Annals of mathematics},
     pages = {1--52},
     publisher = {mathdoc},
     volume = {167},
     number = {1},
     year = {2008},
     doi = {10.4007/annals.2008.167.1},
     mrnumber = {2373151},
     zbl = {1153.32010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1/}
}
TY  - JOUR
AU  - Jean-Paul Brasselet
AU  - Markus J. Pflaum
TI  - On the homology of algebras of Whitney functions over subanalytic sets
JO  - Annals of mathematics
PY  - 2008
SP  - 1
EP  - 52
VL  - 167
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1/
DO  - 10.4007/annals.2008.167.1
LA  - en
ID  - 10_4007_annals_2008_167_1
ER  - 
%0 Journal Article
%A Jean-Paul Brasselet
%A Markus J. Pflaum
%T On the homology of algebras of Whitney functions over subanalytic sets
%J Annals of mathematics
%D 2008
%P 1-52
%V 167
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1/
%R 10.4007/annals.2008.167.1
%G en
%F 10_4007_annals_2008_167_1
Jean-Paul Brasselet; Markus J. Pflaum. On the homology of algebras of Whitney functions over subanalytic sets. Annals of mathematics, Tome 167 (2008) no. 1, pp. 1-52. doi : 10.4007/annals.2008.167.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.1/

Cité par Sources :