Hypergraph regularity and the multidimensional Szemerédi theorem
Annals of mathematics, Tome 166 (2007) no. 3, pp. 897-946.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove analogues for hypergraphs of Szemerédi’s regularity lemma and the associated counting lemma for graphs. As an application, we give the first combinatorial proof of the multidimensional Szemerédi theorem of Furstenberg and Katznelson, and the first proof that provides an explicit bound. Similar results with the same consequences have been obtained independently by Nagle, Rödl, Schacht and Skokan.
DOI : 10.4007/annals.2007.166.897

W. Timothy Gowers 1

1 DPMMS, University of Cambridge, Cambridge CB3 0WB, United Kingdom
@article{10_4007_annals_2007_166_897,
     author = {W. Timothy Gowers},
     title = {Hypergraph regularity and the multidimensional {Szemer\'edi} theorem},
     journal = {Annals of mathematics},
     pages = {897--946},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2007},
     doi = {10.4007/annals.2007.166.897},
     mrnumber = {2373376},
     zbl = {1159.05052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.897/}
}
TY  - JOUR
AU  - W. Timothy Gowers
TI  - Hypergraph regularity and the multidimensional Szemerédi theorem
JO  - Annals of mathematics
PY  - 2007
SP  - 897
EP  - 946
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.897/
DO  - 10.4007/annals.2007.166.897
LA  - en
ID  - 10_4007_annals_2007_166_897
ER  - 
%0 Journal Article
%A W. Timothy Gowers
%T Hypergraph regularity and the multidimensional Szemerédi theorem
%J Annals of mathematics
%D 2007
%P 897-946
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.897/
%R 10.4007/annals.2007.166.897
%G en
%F 10_4007_annals_2007_166_897
W. Timothy Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Annals of mathematics, Tome 166 (2007) no. 3, pp. 897-946. doi : 10.4007/annals.2007.166.897. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.897/

Cité par Sources :