Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, II. Basic estimates
Annals of mathematics, Tome 166 (2007) no. 3, pp. 723-777.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We assume that the manifold with boundary, $X,$ has a Spin${}_{\mathbb{C}}$-structure with spinor bundle $S\mspace{-10mu}/$. Along the boundary, this structure agrees with the structure defined by an infinite order, integrable, almost complex structure and the metric is Kähler. In this case the Spin${}_{\mathbb{C}}$-Dirac operator $\eth$ agrees with $\bar{\partial}_b + \bar{\partial}_b^*$ along the boundary. The induced CR-structure on $bX$ is integrable and either strictly pseudoconvex or strictly pseudoconcave. We assume that $E\to X$ is a complex vector bundle, which has an infinite order, integrable, complex structure along $bX,$ compatible with that defined along $bX.$ In this paper we use boundary layer methods to prove subelliptic estimates for the twisted Spin${}_{\mathbb{C}}$-Dirac operator acting on sections on $S\mspace{-10mu}/ \otimes E$. We use boundary conditions that are modifications of the classical $\bar{\partial}$-Neumann condition. These results are proved by using the extended Heisenberg calculus.
DOI : 10.4007/annals.2007.166.723

Charles L. Epstein 1

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, United States
@article{10_4007_annals_2007_166_723,
     author = {Charles L. Epstein},
     title = {Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ {Dirac} operators, {II.} {Basic} estimates},
     journal = {Annals of mathematics},
     pages = {723--777},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2007},
     doi = {10.4007/annals.2007.166.723},
     mrnumber = {2373372},
     zbl = {1154.32017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.723/}
}
TY  - JOUR
AU  - Charles L. Epstein
TI  - Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, II. Basic estimates
JO  - Annals of mathematics
PY  - 2007
SP  - 723
EP  - 777
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.723/
DO  - 10.4007/annals.2007.166.723
LA  - en
ID  - 10_4007_annals_2007_166_723
ER  - 
%0 Journal Article
%A Charles L. Epstein
%T Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, II. Basic estimates
%J Annals of mathematics
%D 2007
%P 723-777
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.723/
%R 10.4007/annals.2007.166.723
%G en
%F 10_4007_annals_2007_166_723
Charles L. Epstein. Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, II. Basic estimates. Annals of mathematics, Tome 166 (2007) no. 3, pp. 723-777. doi : 10.4007/annals.2007.166.723. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.723/

Cité par Sources :