Finding large Selmer rank via an arithmetic theory of local constants
Annals of mathematics, Tome 166 (2007) no. 2, pp. 579-612.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We obtain lower bounds for Selmer ranks of elliptic curves over dihedral extensions of number fields.
DOI : 10.4007/annals.2007.166.579

Barry Mazur 1 ; Karl Rubin 2

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, United States
2 Department of Mathematics, University of California, Irvine, CA 92697, United States
@article{10_4007_annals_2007_166_579,
     author = {Barry Mazur and Karl Rubin},
     title = {Finding large {Selmer} rank via an arithmetic theory of local constants},
     journal = {Annals of mathematics},
     pages = {579--612},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2007},
     doi = {10.4007/annals.2007.166.579},
     mrnumber = {2373150},
     zbl = {1219.11084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.579/}
}
TY  - JOUR
AU  - Barry Mazur
AU  - Karl Rubin
TI  - Finding large Selmer rank via an arithmetic theory of local constants
JO  - Annals of mathematics
PY  - 2007
SP  - 579
EP  - 612
VL  - 166
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.579/
DO  - 10.4007/annals.2007.166.579
LA  - en
ID  - 10_4007_annals_2007_166_579
ER  - 
%0 Journal Article
%A Barry Mazur
%A Karl Rubin
%T Finding large Selmer rank via an arithmetic theory of local constants
%J Annals of mathematics
%D 2007
%P 579-612
%V 166
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.579/
%R 10.4007/annals.2007.166.579
%G en
%F 10_4007_annals_2007_166_579
Barry Mazur; Karl Rubin. Finding large Selmer rank via an arithmetic theory of local constants. Annals of mathematics, Tome 166 (2007) no. 2, pp. 579-612. doi : 10.4007/annals.2007.166.579. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.579/

Cité par Sources :