Lehmer’s problem for polynomials with odd coefficients
Annals of mathematics, Tome 166 (2007) no. 2, pp. 347-366.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that if $f(x)=\sum_{k=0}^{n-1} a_k x^k$ is a polynomial with no cyclotomic factors whose coefficients satisfy $a_k\equiv1$ mod 2 for $0\leq k\lt n$, then Mahler’s measure of $f$ satisfies \[ \log {\rm M}(f) \geq \frac{\log 5}{4}\left(1-\frac{1}{n}\right). \] This resolves a problem of D. H. Lehmer [12] for the class of polynomials with odd coefficients. We also prove that if $f$ has odd coefficients, degree $n-1$, and at least one noncyclotomic factor, then at least one root $\alpha$ of $f$ satisfies \[ \left\lvert\alpha\right\rvert > 1 + \frac{\log3}{2n}, \] resolving a conjecture of Schinzel and Zassenhaus [21] for this class of polynomials. More generally, we solve the problems of Lehmer and Schinzel and Zassenhaus for the class of polynomials where each coefficient satisfies $a_k\equiv1$ mod $m$ for a fixed integer $m\geq2$. We also characterize the polynomials that appear as the noncyclotomic part of a polynomial whose coefficients satisfy $a_k\equiv1$ mod $p$ for each $k$, for a fixed prime $p$. Last, we prove that the smallest Pisot number whose minimal polynomial has odd coefficients is a limit point, from both sides, of Salem [19] numbers whose minimal polynomials have coefficients in $\{-1,1\}$.
DOI : 10.4007/annals.2007.166.347

Peter Borwein 1 ; Edward Dobrowolski 2 ; Michael J. Mossinghoff 3

1 Department of Mathematics, Simon Fraser University, Burnaby BC V5A 1S6, Canada
2 Department of Mathematics, College of New Caledonia, Prince George, B.C. V2N 1P8, Canada
3 Department of Mathematics, Davidson College, Davidson, NC 28035, United States
@article{10_4007_annals_2007_166_347,
     author = {Peter Borwein and Edward Dobrowolski and Michael J. Mossinghoff},
     title = {Lehmer{\textquoteright}s problem for polynomials with odd coefficients},
     journal = {Annals of mathematics},
     pages = {347--366},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2007},
     doi = {10.4007/annals.2007.166.347},
     mrnumber = {2373144},
     zbl = {1172.11034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.347/}
}
TY  - JOUR
AU  - Peter Borwein
AU  - Edward Dobrowolski
AU  - Michael J. Mossinghoff
TI  - Lehmer’s problem for polynomials with odd coefficients
JO  - Annals of mathematics
PY  - 2007
SP  - 347
EP  - 366
VL  - 166
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.347/
DO  - 10.4007/annals.2007.166.347
LA  - en
ID  - 10_4007_annals_2007_166_347
ER  - 
%0 Journal Article
%A Peter Borwein
%A Edward Dobrowolski
%A Michael J. Mossinghoff
%T Lehmer’s problem for polynomials with odd coefficients
%J Annals of mathematics
%D 2007
%P 347-366
%V 166
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.347/
%R 10.4007/annals.2007.166.347
%G en
%F 10_4007_annals_2007_166_347
Peter Borwein; Edward Dobrowolski; Michael J. Mossinghoff. Lehmer’s problem for polynomials with odd coefficients. Annals of mathematics, Tome 166 (2007) no. 2, pp. 347-366. doi : 10.4007/annals.2007.166.347. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.347/

Cité par Sources :