Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, I
Annals of mathematics, Tome 166 (2007) no. 1, pp. 183-214.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $X$ be a compact Kähler manifold with strictly pseudoconvex boundary, $Y.$ In this setting, the Spin${}_{\mathbb{C}}$ Dirac operator is canonically identified with $\bar{\partial}_b+\bar{\partial}_b^*:{\mathcal C}^{\infty}(X;\Lambda^{0,e})\rightarrow {\mathcal C}^{\infty} (X;\Lambda^{0,o}).$ We consider modifications of the classical $\bar{\partial}_b$-Neumann conditions that define Fredholm problems for the Spin${}_{\mathbb{C}}$ Dirac operator. In Part 2, [7], we use boundary layer methods to obtain subelliptic estimates for these boundary value problems. Using these results, we obtain an expression for the finite part of the holomorphic Euler characteristic of a strictly pseudoconvex manifold as the index of a Spin${}_{\mathbb{C}}$ Dirac operator with a subelliptic boundary condition. We also prove an analogue of the Agranovich-Dynin formula expressing the change in the index in terms of a relative index on the boundary. If $X$ is a complex manifold partitioned by a strictly pseudoconvex hypersurface, then we obtain formulæ for the holomorphic Euler characteristic of $X$ as sums of indices of Spin${}_{\mathbb{C}}$ Dirac operators on the components. This is a subelliptic analogue of Bojarski’s formula in the elliptic case.
DOI : 10.4007/annals.2007.166.183

Charles L. Epstein 1

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, United States
@article{10_4007_annals_2007_166_183,
     author = {Charles L. Epstein},
     title = {Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ {Dirac} operators, {I}},
     journal = {Annals of mathematics},
     pages = {183--214},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.166.183},
     mrnumber = {2342694},
     zbl = {1154.32016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.183/}
}
TY  - JOUR
AU  - Charles L. Epstein
TI  - Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, I
JO  - Annals of mathematics
PY  - 2007
SP  - 183
EP  - 214
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.183/
DO  - 10.4007/annals.2007.166.183
LA  - en
ID  - 10_4007_annals_2007_166_183
ER  - 
%0 Journal Article
%A Charles L. Epstein
%T Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, I
%J Annals of mathematics
%D 2007
%P 183-214
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.183/
%R 10.4007/annals.2007.166.183
%G en
%F 10_4007_annals_2007_166_183
Charles L. Epstein. Subelliptic $\mathrm{Spin}_{\mathbb{C}}$ Dirac operators, I. Annals of mathematics, Tome 166 (2007) no. 1, pp. 183-214. doi : 10.4007/annals.2007.166.183. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.183/

Cité par Sources :