Isoparametric hypersurfaces with four principal curvatures
Annals of mathematics, Tome 166 (2007) no. 1, pp. 1-76.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $M$ be an isoparametric hypersurface in the sphere $S^n$ with four distinct principal curvatures. Münzner showed that the four principal curvatures can have at most two distinct multiplicities $m_1, m_2$, and Stolz showed that the pair $(m_1,m_2)$ must either be $(2,2)$, $(4,5)$, or be equal to the multiplicities of an isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and Münzner from orthogonal representations of Clifford algebras. In this paper, we prove that if the multiplicities satisfy $m_2 \geq 2m_1 – 1$, then the isoparametric hypersurface $M$ must be of FKM-type. Together with known results of Takagi for the case $m_1 = 1$, and Ozeki and Takeuchi for $m_1 = 2$, this handles all possible pairs of multiplicities except for four cases, for which the classification problem remains open.
DOI : 10.4007/annals.2007.166.1

Thomas E. Cecil 1 ; Quo-Shin Chi 2 ; Gary R. Jensen 2

1 Department of Mathematics, College of the Holy Cross, Worcester, MA 01610, United States
2 Department of Mathematics, Washington University, Saint Louis, MO 63130, United States
@article{10_4007_annals_2007_166_1,
     author = {Thomas E. Cecil and Quo-Shin Chi and Gary R. Jensen},
     title = {Isoparametric hypersurfaces with four principal curvatures},
     journal = {Annals of mathematics},
     pages = {1--76},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.166.1},
     mrnumber = {2342690},
     zbl = {1143.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.1/}
}
TY  - JOUR
AU  - Thomas E. Cecil
AU  - Quo-Shin Chi
AU  - Gary R. Jensen
TI  - Isoparametric hypersurfaces with four principal curvatures
JO  - Annals of mathematics
PY  - 2007
SP  - 1
EP  - 76
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.1/
DO  - 10.4007/annals.2007.166.1
LA  - en
ID  - 10_4007_annals_2007_166_1
ER  - 
%0 Journal Article
%A Thomas E. Cecil
%A Quo-Shin Chi
%A Gary R. Jensen
%T Isoparametric hypersurfaces with four principal curvatures
%J Annals of mathematics
%D 2007
%P 1-76
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.1/
%R 10.4007/annals.2007.166.1
%G en
%F 10_4007_annals_2007_166_1
Thomas E. Cecil; Quo-Shin Chi; Gary R. Jensen. Isoparametric hypersurfaces with four principal curvatures. Annals of mathematics, Tome 166 (2007) no. 1, pp. 1-76. doi : 10.4007/annals.2007.166.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.166.1/

Cité par Sources :