Proof of the Lovász conjecture
Annals of mathematics, Tome 165 (2007) no. 3, pp. 965-1007.

Voir la notice de l'article provenant de la source Annals of Mathematics website

To any two graphs $G$ and $H$ one can associate a cell complex ${\tt Hom}(G,H)$ by taking all graph multihomomorphisms from $G$ to $H$ as cells.
DOI : 10.4007/annals.2007.165.965

Eric Babson 1 ; Dmitry N. Kozlov 2

1 Department of Mathematics, University of Washington, Seattle, WA 98195, United States
2 Departement Mathematik, Eidgenössische Technische Hochschule, 8092 Zürich, Switzerland
@article{10_4007_annals_2007_165_965,
     author = {Eric Babson and Dmitry N. Kozlov},
     title = {Proof of the {Lov\'asz} conjecture},
     journal = {Annals of mathematics},
     pages = {965--1007},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2007},
     doi = {10.4007/annals.2007.165.965},
     mrnumber = {2335799},
     zbl = {1132.05019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.965/}
}
TY  - JOUR
AU  - Eric Babson
AU  - Dmitry N. Kozlov
TI  - Proof of the Lovász conjecture
JO  - Annals of mathematics
PY  - 2007
SP  - 965
EP  - 1007
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.965/
DO  - 10.4007/annals.2007.165.965
LA  - en
ID  - 10_4007_annals_2007_165_965
ER  - 
%0 Journal Article
%A Eric Babson
%A Dmitry N. Kozlov
%T Proof of the Lovász conjecture
%J Annals of mathematics
%D 2007
%P 965-1007
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.965/
%R 10.4007/annals.2007.165.965
%G en
%F 10_4007_annals_2007_165_965
Eric Babson; Dmitry N. Kozlov. Proof of the Lovász conjecture. Annals of mathematics, Tome 165 (2007) no. 3, pp. 965-1007. doi : 10.4007/annals.2007.165.965. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.965/

Cité par Sources :