Pseudodifferential operators on manifolds with a Lie structure at infinity
Annals of mathematics, Tome 165 (2007) no. 3, pp. 717-747.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We define and study an algebra $\Psi_{1,0,\mathcal{V}}^\infty(M_0)$ of pseudodifferential operators canonically associated to a noncompact, Riemannian manifold $M_0$ whose geometry at infinity is described by a Lie algebra of vector fields $\mathcal{V}$ on a compactification $M$ of $M_0$ to a compact manifold with corners. We show that the basic properties of the usual algebra of pseudodifferential operators on a compact manifold extend to $\Psi_{1,0,\mathcal{V}}^\infty(M_0)$. We also consider the algebra $Diff^{*}_{\mathcal{v}}(M_0)$ of differential operators on $M_0$ generated by $\mathcal{V}$ and $\mathcal{C}^{\infty}(M)$, and show that $\Psi_{1,0,\mathcal{V}}^\infty(M_0)$ is a microlocalization of $Diff^{*}_{\mathcal{V}}(M_0)$. Our construction solves a problem posed by Melrose in 1990. Finally, we introduce and study semi-classical and “suspended” versions of the algebra $\Psi_{1,0,\mathcal{V}}^\infty(M_0)$.
DOI : 10.4007/annals.2007.165.717

Bernd Ammann 1 ; Robert Lauter 2 ; Victor Nistor 3

1 L'Institut Élie Cartan, Université Henri Poincaré , 54506 Vandoeuvre-lès-Nancy, France
2 Institut für Mathematik, Universität Mainz, 55099 Mainz, Germany
3 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States
@article{10_4007_annals_2007_165_717,
     author = {Bernd Ammann and Robert Lauter and Victor Nistor},
     title = {Pseudodifferential operators on manifolds with a {Lie} structure at infinity},
     journal = {Annals of mathematics},
     pages = {717--747},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2007},
     doi = {10.4007/annals.2007.165.717},
     mrnumber = {2335795},
     zbl = {1133.58020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.717/}
}
TY  - JOUR
AU  - Bernd Ammann
AU  - Robert Lauter
AU  - Victor Nistor
TI  - Pseudodifferential operators on manifolds with a Lie structure at infinity
JO  - Annals of mathematics
PY  - 2007
SP  - 717
EP  - 747
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.717/
DO  - 10.4007/annals.2007.165.717
LA  - en
ID  - 10_4007_annals_2007_165_717
ER  - 
%0 Journal Article
%A Bernd Ammann
%A Robert Lauter
%A Victor Nistor
%T Pseudodifferential operators on manifolds with a Lie structure at infinity
%J Annals of mathematics
%D 2007
%P 717-747
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.717/
%R 10.4007/annals.2007.165.717
%G en
%F 10_4007_annals_2007_165_717
Bernd Ammann; Robert Lauter; Victor Nistor. Pseudodifferential operators on manifolds with a Lie structure at infinity. Annals of mathematics, Tome 165 (2007) no. 3, pp. 717-747. doi : 10.4007/annals.2007.165.717. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.717/

Cité par Sources :