Weak mixing for interval exchange transformations and translation flows
Annals of mathematics, Tome 165 (2007) no. 2, pp. 637-664.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that a typical interval exchange transformation is either weakly mixing or it is an irrational rotation. We also conclude that a typical translation flow on a typical translation surface of genus $g \geq 2$ (with prescribed singularity types) is weakly mixing.
DOI : 10.4007/annals.2007.165.637

Artur Ávila 1 ; Giovanni Forni 2

1 CNRS UMR 7599, Université Pierre et Marie Curie, 75252 Paris, France
2 Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4
@article{10_4007_annals_2007_165_637,
     author = {Artur \'Avila and Giovanni Forni},
     title = {Weak mixing for interval exchange transformations and translation flows},
     journal = {Annals of mathematics},
     pages = {637--664},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2007},
     doi = {10.4007/annals.2007.165.637},
     mrnumber = {2299743},
     zbl = {2299743},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.637/}
}
TY  - JOUR
AU  - Artur Ávila
AU  - Giovanni Forni
TI  - Weak mixing for interval exchange transformations and translation flows
JO  - Annals of mathematics
PY  - 2007
SP  - 637
EP  - 664
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.637/
DO  - 10.4007/annals.2007.165.637
LA  - en
ID  - 10_4007_annals_2007_165_637
ER  - 
%0 Journal Article
%A Artur Ávila
%A Giovanni Forni
%T Weak mixing for interval exchange transformations and translation flows
%J Annals of mathematics
%D 2007
%P 637-664
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.637/
%R 10.4007/annals.2007.165.637
%G en
%F 10_4007_annals_2007_165_637
Artur Ávila; Giovanni Forni. Weak mixing for interval exchange transformations and translation flows. Annals of mathematics, Tome 165 (2007) no. 2, pp. 637-664. doi : 10.4007/annals.2007.165.637. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.637/

Cité par Sources :