The Calderón problem with partial data
Annals of mathematics, Tome 165 (2007) no. 2, pp. 567-591.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we improve an earlier result by Bukhgeim and Uhlmann [1] showing that in dimension $n\ge 3$, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem. This implies a similar result for the problem of Electrical Impedance Tomography which consists in determining the conductivity of a body by making voltage and current measurements at the boundary.
DOI : 10.4007/annals.2007.165.567

Carlos E. Kenig 1 ; Johannes Sjöstrand 2 ; Gunther Uhlmann 3

1 Department of Mathematics, University of Chicago, Chicago, IL 60637, United States and School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States
2 Centre de Mathématiques, École Polytechnique, 91128 Palaiseau, France
3 Department of Mathematics, University of Washington, Seattle, WA 98195, United States
@article{10_4007_annals_2007_165_567,
     author = {Carlos E. Kenig and Johannes Sj\"ostrand and Gunther Uhlmann},
     title = {The {Calder\'on} problem with partial data},
     journal = {Annals of mathematics},
     pages = {567--591},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2007},
     doi = {10.4007/annals.2007.165.567},
     mrnumber = {2299741},
     zbl = {1127.35079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.567/}
}
TY  - JOUR
AU  - Carlos E. Kenig
AU  - Johannes Sjöstrand
AU  - Gunther Uhlmann
TI  - The Calderón problem with partial data
JO  - Annals of mathematics
PY  - 2007
SP  - 567
EP  - 591
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.567/
DO  - 10.4007/annals.2007.165.567
LA  - en
ID  - 10_4007_annals_2007_165_567
ER  - 
%0 Journal Article
%A Carlos E. Kenig
%A Johannes Sjöstrand
%A Gunther Uhlmann
%T The Calderón problem with partial data
%J Annals of mathematics
%D 2007
%P 567-591
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.567/
%R 10.4007/annals.2007.165.567
%G en
%F 10_4007_annals_2007_165_567
Carlos E. Kenig; Johannes Sjöstrand; Gunther Uhlmann. The Calderón problem with partial data. Annals of mathematics, Tome 165 (2007) no. 2, pp. 567-591. doi : 10.4007/annals.2007.165.567. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.567/

Cité par Sources :