Bounds for polynomials with a unit discrete norm
Annals of mathematics, Tome 165 (2007) no. 1, pp. 55-88.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $E$ be the set of $N$ equidistant points in $(-1,1)$ and $\mathbb{P}_n(E)$ be the set of all polynomials $P$ of degree $\le n$ with $\max\{|P(\zeta)|,\zeta\in E\}\le 1$. We prove that \[ K_{n,N}(x)=\max_{P\in\mathbb{P}_n(E)}|P(x)|\le C\log\frac\pi{\arctan(\frac Nn\sqrt{r^2-x^2})}, \] \[ |x|\le r:=\sqrt{1-n^2/N^2} \] where $n\lt N$ and $C$ is an absolute constant. The result is essentially sharp. Bounds for $K_{n,N}(z)$, $z\in\mathbb{C}$, uniform for $n\lt N$, are also obtained.
DOI : 10.4007/annals.2007.165.55

Evguenii A. Rakhmanov 1

1 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States
@article{10_4007_annals_2007_165_55,
     author = {Evguenii A. Rakhmanov},
     title = {Bounds for polynomials with a unit discrete norm},
     journal = {Annals of mathematics},
     pages = {55--88},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.165.55},
     mrnumber = {2276767},
     zbl = {1124.41014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/}
}
TY  - JOUR
AU  - Evguenii A. Rakhmanov
TI  - Bounds for polynomials with a unit discrete norm
JO  - Annals of mathematics
PY  - 2007
SP  - 55
EP  - 88
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/
DO  - 10.4007/annals.2007.165.55
LA  - en
ID  - 10_4007_annals_2007_165_55
ER  - 
%0 Journal Article
%A Evguenii A. Rakhmanov
%T Bounds for polynomials with a unit discrete norm
%J Annals of mathematics
%D 2007
%P 55-88
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/
%R 10.4007/annals.2007.165.55
%G en
%F 10_4007_annals_2007_165_55
Evguenii A. Rakhmanov. Bounds for polynomials with a unit discrete norm. Annals of mathematics, Tome 165 (2007) no. 1, pp. 55-88. doi : 10.4007/annals.2007.165.55. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/

Cité par Sources :