Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$
Annals of mathematics, Tome 165 (2007) no. 1, pp. 275-333.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\Gamma$ be a principal congruence subgroup of $\mathrm{SL}_n(\mathbb{Z})$ and let $\sigma$ be an irreducible unitary representation of $\mathrm{SO}(n)$. Let $N^\Gamma_{\mathrm{cu}}(\lambda,\sigma)$ be the counting function of the eigenvalues of the Casimir operator acting in the space of cusp forms for $\Gamma$ which transform under $\mathrm{SO}(n)$ according to $\sigma$. In this paper we prove that the counting function $N^\Gamma_{\mathrm{cu}}(\lambda,\sigma)$ satisfies Weyl’s law. Especially, this implies that there exist infinitely many cusp forms for the full modular group $\mathrm{SL}_n(\mathbb{Z})$.
DOI : 10.4007/annals.2007.165.275

Werner Müller 1

1 Universität Bonn, Mathematisches Institut, D-53115 Bonn, Germany
@article{10_4007_annals_2007_165_275,
     author = {Werner M\"uller},
     title = {Weyl{\textquoteright}s law for the cuspidal spectrum of $\mathrm{SL}_n$},
     journal = {Annals of mathematics},
     pages = {275--333},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.165.275},
     mrnumber = {2276771},
     zbl = {1119.11027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/}
}
TY  - JOUR
AU  - Werner Müller
TI  - Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$
JO  - Annals of mathematics
PY  - 2007
SP  - 275
EP  - 333
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/
DO  - 10.4007/annals.2007.165.275
LA  - en
ID  - 10_4007_annals_2007_165_275
ER  - 
%0 Journal Article
%A Werner Müller
%T Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$
%J Annals of mathematics
%D 2007
%P 275-333
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/
%R 10.4007/annals.2007.165.275
%G en
%F 10_4007_annals_2007_165_275
Werner Müller. Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$. Annals of mathematics, Tome 165 (2007) no. 1, pp. 275-333. doi : 10.4007/annals.2007.165.275. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/

Cité par Sources :