On finitely generated profinite groups, II: products in quasisimple groups
Annals of mathematics, Tome 165 (2007) no. 1, pp. 239-273.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove two results. (1) There is an absolute constant $D$ such that for any finite quasisimple group $S$, given $2D$ arbitrary automorphisms of $S$, every element of $S$ is equal to a product of $D$ ‘twisted commutators’ defined by the given automorphisms.
DOI : 10.4007/annals.2007.165.239

Nikolay Nikolov 1 ; Dan Segal 2

1 New College, Oxford University, Oxford OX1 3BN, United Kingdom
2 All Souls College, Oxford University, Oxford OX1 4AL, United Kingdom
@article{10_4007_annals_2007_165_239,
     author = {Nikolay Nikolov and Dan Segal},
     title = {On finitely generated profinite groups, {II:} products in quasisimple groups},
     journal = {Annals of mathematics},
     pages = {239--273},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.165.239},
     mrnumber = {2276770},
     zbl = {1126.20018
},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.239/}
}
TY  - JOUR
AU  - Nikolay Nikolov
AU  - Dan Segal
TI  - On finitely generated profinite groups, II: products in quasisimple groups
JO  - Annals of mathematics
PY  - 2007
SP  - 239
EP  - 273
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.239/
DO  - 10.4007/annals.2007.165.239
LA  - en
ID  - 10_4007_annals_2007_165_239
ER  - 
%0 Journal Article
%A Nikolay Nikolov
%A Dan Segal
%T On finitely generated profinite groups, II: products in quasisimple groups
%J Annals of mathematics
%D 2007
%P 239-273
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.239/
%R 10.4007/annals.2007.165.239
%G en
%F 10_4007_annals_2007_165_239
Nikolay Nikolov; Dan Segal. On finitely generated profinite groups, II: products in quasisimple groups. Annals of mathematics, Tome 165 (2007) no. 1, pp. 239-273. doi : 10.4007/annals.2007.165.239. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.239/

Cité par Sources :