On finitely generated profinite groups, I: strong completeness and uniform bounds
Annals of mathematics, Tome 165 (2007) no. 1, pp. 171-238.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that in every finitely generated profinite group, every subgroup of finite index is open; this implies that the topology on such groups is determined by the algebraic structure. This is deduced from the main result about finite groups: let $w$ be a `locally finite’ group word and $d\in\mathbb{N}$. Then there exists $f=f(w,d)$ such that in every $d$-generator finite group $G$, every element of the verbal subgroup $w(G)$ is equal to a product of $f$ $w$-values.
DOI : 10.4007/annals.2007.165.171

Nikolay Nikolov 1 ; Dan Segal 2

1 New College, Oxford University, Oxford OX1 3BN, United Kingdom
2 All Souls College, Oxford University, Oxford OX1 4AL, United Kingdom
@article{10_4007_annals_2007_165_171,
     author = {Nikolay Nikolov and Dan Segal},
     title = {On finitely generated profinite groups, {I:} strong completeness and uniform bounds},
     journal = {Annals of mathematics},
     pages = {171--238},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.165.171},
     mrnumber = {2276769},
     zbl = {1126.20018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.171/}
}
TY  - JOUR
AU  - Nikolay Nikolov
AU  - Dan Segal
TI  - On finitely generated profinite groups, I: strong completeness and uniform bounds
JO  - Annals of mathematics
PY  - 2007
SP  - 171
EP  - 238
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.171/
DO  - 10.4007/annals.2007.165.171
LA  - en
ID  - 10_4007_annals_2007_165_171
ER  - 
%0 Journal Article
%A Nikolay Nikolov
%A Dan Segal
%T On finitely generated profinite groups, I: strong completeness and uniform bounds
%J Annals of mathematics
%D 2007
%P 171-238
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.171/
%R 10.4007/annals.2007.165.171
%G en
%F 10_4007_annals_2007_165_171
Nikolay Nikolov; Dan Segal. On finitely generated profinite groups, I: strong completeness and uniform bounds. Annals of mathematics, Tome 165 (2007) no. 1, pp. 171-238. doi : 10.4007/annals.2007.165.171. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.171/

Cité par Sources :