Quantum Riemann–Roch, Lefschetz and Serre
Annals of mathematics, Tome 165 (2007) no. 1, pp. 15-53.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given a holomorphic vector bundle $E$ over a compact Kähler manifold $X$, one defines twisted Gromov-Witten invariants of $X$ to be intersection numbers in moduli spaces of stable maps $f:\Sigma \to X$ with the cap product of the virtual fundamental class and a chosen multiplicative invertible characteristic class of the virtual vector bundle $H^0(\Sigma,f^* E) \ominus H^1(\Sigma,f^* E)$. Using the formalism of quantized quadratic Hamiltonians [25], we express the descendant potential for the twisted theory in terms of that for $X$. This result (Theorem $1$) is a consequence of Mumford’s Grothendieck-Riemann-Roch theorem applied to the universal family over the moduli space of stable maps. It determines all twisted Gromov-Witten invariants, of all genera, in terms of untwisted invariants.
DOI : 10.4007/annals.2007.165.15

Thomas Coates 1 ; Alexander Givental 2

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, United States
2 Department of Mathematics, University of California Berkeley, Berkeley CA 94720, United States
@article{10_4007_annals_2007_165_15,
     author = {Thomas Coates and Alexander Givental},
     title = {Quantum {Riemann{\textendash}Roch,} {Lefschetz} and {Serre}},
     journal = {Annals of mathematics},
     pages = {15--53},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2007},
     doi = {10.4007/annals.2007.165.15},
     mrnumber = {2276766},
     zbl = {1189.14063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.15/}
}
TY  - JOUR
AU  - Thomas Coates
AU  - Alexander Givental
TI  - Quantum Riemann–Roch, Lefschetz and Serre
JO  - Annals of mathematics
PY  - 2007
SP  - 15
EP  - 53
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.15/
DO  - 10.4007/annals.2007.165.15
LA  - en
ID  - 10_4007_annals_2007_165_15
ER  - 
%0 Journal Article
%A Thomas Coates
%A Alexander Givental
%T Quantum Riemann–Roch, Lefschetz and Serre
%J Annals of mathematics
%D 2007
%P 15-53
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.15/
%R 10.4007/annals.2007.165.15
%G en
%F 10_4007_annals_2007_165_15
Thomas Coates; Alexander Givental. Quantum Riemann–Roch, Lefschetz and Serre. Annals of mathematics, Tome 165 (2007) no. 1, pp. 15-53. doi : 10.4007/annals.2007.165.15. http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.15/

Cité par Sources :