A Paley–Wiener theorem for reductive symmetric spaces
Annals of mathematics, Tome 164 (2006) no. 3, pp. 879-909.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $X=G/H$ be a reductive symmetric space and $K$ a maximal compact subgroup of $G$. The image under the Fourier transform of the space of $K$-finite compactly supported smooth functions on $X$ is characterized.
DOI : 10.4007/annals.2006.164.879

Erik P. van den Ban 1 ; Henrik Schlichtkrull 2

1 Mathematisch Instituut, Universiteit Utrecht, 3508 Utrecht, Netherlands
2 Matematisk Institut, København Universitet, 2100 København Ø, Denmark
@article{10_4007_annals_2006_164_879,
     author = {Erik P. van den Ban and Henrik Schlichtkrull},
     title = {A {Paley{\textendash}Wiener} theorem for reductive symmetric spaces},
     journal = {Annals of mathematics},
     pages = {879--909},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2006},
     doi = {10.4007/annals.2006.164.879},
     mrnumber = {2259247},
     zbl = {1132.22010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.879/}
}
TY  - JOUR
AU  - Erik P. van den Ban
AU  - Henrik Schlichtkrull
TI  - A Paley–Wiener theorem for reductive symmetric spaces
JO  - Annals of mathematics
PY  - 2006
SP  - 879
EP  - 909
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.879/
DO  - 10.4007/annals.2006.164.879
LA  - en
ID  - 10_4007_annals_2006_164_879
ER  - 
%0 Journal Article
%A Erik P. van den Ban
%A Henrik Schlichtkrull
%T A Paley–Wiener theorem for reductive symmetric spaces
%J Annals of mathematics
%D 2006
%P 879-909
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.879/
%R 10.4007/annals.2006.164.879
%G en
%F 10_4007_annals_2006_164_879
Erik P. van den Ban; Henrik Schlichtkrull. A Paley–Wiener theorem for reductive symmetric spaces. Annals of mathematics, Tome 164 (2006) no. 3, pp. 879-909. doi : 10.4007/annals.2006.164.879. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.879/

Cité par Sources :