Global hyperbolicity of renormalization for $C^r$ unimodal mappings
Annals of mathematics, Tome 164 (2006) no. 3, pp. 731-824.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we extend M. Lyubich’s recent results on the global hyperbolicity of renormalization of quadratic-like germs to the space of $C^r$ unimodal maps with quadratic critical point. We show that in this space the bounded-type limit sets of the renormalization operator have an invariant hyperbolic structure provided $r \ge 2+\alpha$ with $\alpha$ close to one. As an intermediate step between Lyubich’s results and ours, we prove that the renormalization operator is hyperbolic in a Banach space of real analytic maps. We construct the local stable manifolds and prove that they form a continuous lamination whose leaves are $C^1$ codimension one, Banach submanifolds of the ambient space, and whose holonomy is $C^{1+\beta}$ for some $\beta>0$. We also prove that the global stable sets are $C^1$ immersed (codimension one) submanifolds as well, provided $r \ge 3+\alpha$ with $\alpha$ close to one. As a corollary, we deduce that in generic, one-parameter families of $C^r$ unimodal maps, the set of parameters corresponding to infinitely renormalizable maps of bounded combinatorial type is a Cantor set with Hausdorff dimension less than one.
DOI : 10.4007/annals.2006.164.731

Edson de Faria 1 ; Welington de Melo 2 ; Alberto Pinto 3

1 Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090 Sao Paulo SP, Brazil
2 I.M.P.A., Rio de Janeiro, Brazil 22460-320
3 Departamentos de Matemática, Universidade do Porto, Porto, Portugal
@article{10_4007_annals_2006_164_731,
     author = {Edson de Faria and Welington de Melo and Alberto Pinto},
     title = {Global hyperbolicity of renormalization for $C^r$ unimodal mappings},
     journal = {Annals of mathematics},
     pages = {731--824},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2006},
     doi = {10.4007/annals.2006.164.731},
     mrnumber = {2259245},
     zbl = {1129.37021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.731/}
}
TY  - JOUR
AU  - Edson de Faria
AU  - Welington de Melo
AU  - Alberto Pinto
TI  - Global hyperbolicity of renormalization for $C^r$ unimodal mappings
JO  - Annals of mathematics
PY  - 2006
SP  - 731
EP  - 824
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.731/
DO  - 10.4007/annals.2006.164.731
LA  - en
ID  - 10_4007_annals_2006_164_731
ER  - 
%0 Journal Article
%A Edson de Faria
%A Welington de Melo
%A Alberto Pinto
%T Global hyperbolicity of renormalization for $C^r$ unimodal mappings
%J Annals of mathematics
%D 2006
%P 731-824
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.731/
%R 10.4007/annals.2006.164.731
%G en
%F 10_4007_annals_2006_164_731
Edson de Faria; Welington de Melo; Alberto Pinto. Global hyperbolicity of renormalization for $C^r$ unimodal mappings. Annals of mathematics, Tome 164 (2006) no. 3, pp. 731-824. doi : 10.4007/annals.2006.164.731. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.731/

Cité par Sources :