Combinatorics of random processes and sections of convex bodies
Annals of mathematics, Tome 164 (2006) no. 2, pp. 603-648 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We find a sharp combinatorial bound for the metric entropy of sets in $\mathbb{R}^n$ and general classes of functions. This solves two basic combinatorial conjectures on the empirical processes. 1. A class of functions satisfies the uniform Central Limit Theorem if the square root of its combinatorial dimension is integrable. 2. The uniform entropy is equivalent to the combinatorial dimension under minimal regularity. Our method also constructs a nicely bounded coordinate section of a symmetric convex body in $\mathbb{R}^n$. In the operator theory, this essentially proves for all normed spaces the restricted invertibility principle of Bourgain and Tzafriri.

DOI : 10.4007/annals.2006.164.603

Mark Rudelson 1 ; Roman Vershynin 2

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, United States
2 Department of Mathematics, University of California, Davis, CA 95616, United States
@article{10_4007_annals_2006_164_603,
     author = {Mark Rudelson and Roman Vershynin},
     title = {Combinatorics of random processes and sections of convex bodies},
     journal = {Annals of mathematics},
     pages = {603--648},
     year = {2006},
     volume = {164},
     number = {2},
     doi = {10.4007/annals.2006.164.603},
     mrnumber = {2247969},
     zbl = {1114.60009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/}
}
TY  - JOUR
AU  - Mark Rudelson
AU  - Roman Vershynin
TI  - Combinatorics of random processes and sections of convex bodies
JO  - Annals of mathematics
PY  - 2006
SP  - 603
EP  - 648
VL  - 164
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/
DO  - 10.4007/annals.2006.164.603
LA  - en
ID  - 10_4007_annals_2006_164_603
ER  - 
%0 Journal Article
%A Mark Rudelson
%A Roman Vershynin
%T Combinatorics of random processes and sections of convex bodies
%J Annals of mathematics
%D 2006
%P 603-648
%V 164
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/
%R 10.4007/annals.2006.164.603
%G en
%F 10_4007_annals_2006_164_603
Mark Rudelson; Roman Vershynin. Combinatorics of random processes and sections of convex bodies. Annals of mathematics, Tome 164 (2006) no. 2, pp. 603-648. doi: 10.4007/annals.2006.164.603

Cité par Sources :