We find a sharp combinatorial bound for the metric entropy of sets in $\mathbb{R}^n$ and general classes of functions. This solves two basic combinatorial conjectures on the empirical processes. 1. A class of functions satisfies the uniform Central Limit Theorem if the square root of its combinatorial dimension is integrable. 2. The uniform entropy is equivalent to the combinatorial dimension under minimal regularity. Our method also constructs a nicely bounded coordinate section of a symmetric convex body in $\mathbb{R}^n$. In the operator theory, this essentially proves for all normed spaces the restricted invertibility principle of Bourgain and Tzafriri.
Mark Rudelson 1 ; Roman Vershynin 2
@article{10_4007_annals_2006_164_603,
author = {Mark Rudelson and Roman Vershynin},
title = {Combinatorics of random processes and sections of convex bodies},
journal = {Annals of mathematics},
pages = {603--648},
year = {2006},
volume = {164},
number = {2},
doi = {10.4007/annals.2006.164.603},
mrnumber = {2247969},
zbl = {1114.60009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/}
}
TY - JOUR AU - Mark Rudelson AU - Roman Vershynin TI - Combinatorics of random processes and sections of convex bodies JO - Annals of mathematics PY - 2006 SP - 603 EP - 648 VL - 164 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/ DO - 10.4007/annals.2006.164.603 LA - en ID - 10_4007_annals_2006_164_603 ER -
%0 Journal Article %A Mark Rudelson %A Roman Vershynin %T Combinatorics of random processes and sections of convex bodies %J Annals of mathematics %D 2006 %P 603-648 %V 164 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.603/ %R 10.4007/annals.2006.164.603 %G en %F 10_4007_annals_2006_164_603
Mark Rudelson; Roman Vershynin. Combinatorics of random processes and sections of convex bodies. Annals of mathematics, Tome 164 (2006) no. 2, pp. 603-648. doi: 10.4007/annals.2006.164.603
Cité par Sources :