Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products
Annals of mathematics, Tome 164 (2006) no. 2, pp. 561-601.

Voir la notice de l'article provenant de la source Annals of Mathematics website

I prove a formula expressing the descendent genus $g$ Gromov-Witten invariants of a projective variety $X$ in terms of genus $0$ invariants of its symmetric product stack $S^{g+1}(X)$. When $X$ is a point, the latter are structure constants of the symmetric group, and we obtain a new way of calculating the Gromov-Witten invariants of a point.
DOI : 10.4007/annals.2006.164.561

Kevin Costello 1

1 Department of Mathematics, Northwestern University, Evanston, IL 60208, United States
@article{10_4007_annals_2006_164_561,
     author = {Kevin Costello},
     title = {Higher genus {Gromov{\textendash}Witten} invariants as genus zero invariants of symmetric products},
     journal = {Annals of mathematics},
     pages = {561--601},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2006},
     doi = {10.4007/annals.2006.164.561},
     mrnumber = {2247968},
     zbl = {1209.14046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.561/}
}
TY  - JOUR
AU  - Kevin Costello
TI  - Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products
JO  - Annals of mathematics
PY  - 2006
SP  - 561
EP  - 601
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.561/
DO  - 10.4007/annals.2006.164.561
LA  - en
ID  - 10_4007_annals_2006_164_561
ER  - 
%0 Journal Article
%A Kevin Costello
%T Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products
%J Annals of mathematics
%D 2006
%P 561-601
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.561/
%R 10.4007/annals.2006.164.561
%G en
%F 10_4007_annals_2006_164_561
Kevin Costello. Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products. Annals of mathematics, Tome 164 (2006) no. 2, pp. 561-601. doi : 10.4007/annals.2006.164.561. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.561/

Cité par Sources :