Schubert induction
Annals of mathematics, Tome 164 (2006) no. 2, pp. 489-512.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We describe a Schubert induction theorem, a tool for analyzing intersections on a Grassmannian over an arbitrary base ring. The key ingredient in the proof is the Geometric Littlewood-Richardson rule of [V2].
DOI : 10.4007/annals.2006.164.489

Ravi Vakil 1

1 Department of Mathematics, Stanford University, Stanford, CA 94305, United States
@article{10_4007_annals_2006_164_489,
     author = {Ravi Vakil},
     title = {Schubert induction},
     journal = {Annals of mathematics},
     pages = {489--512},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2006},
     doi = {10.4007/annals.2006.164.489},
     mrnumber = {2247966},
     zbl = {1115.14043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.489/}
}
TY  - JOUR
AU  - Ravi Vakil
TI  - Schubert induction
JO  - Annals of mathematics
PY  - 2006
SP  - 489
EP  - 512
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.489/
DO  - 10.4007/annals.2006.164.489
LA  - en
ID  - 10_4007_annals_2006_164_489
ER  - 
%0 Journal Article
%A Ravi Vakil
%T Schubert induction
%J Annals of mathematics
%D 2006
%P 489-512
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.489/
%R 10.4007/annals.2006.164.489
%G en
%F 10_4007_annals_2006_164_489
Ravi Vakil. Schubert induction. Annals of mathematics, Tome 164 (2006) no. 2, pp. 489-512. doi : 10.4007/annals.2006.164.489. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.489/

Cité par Sources :