Whitney’s extension problem for $C^m$
Annals of mathematics, Tome 164 (2006) no. 1, pp. 313-359.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $f$ be a real-valued function on a compact set in $\mathbb{R}^n$, and let $m$ be a positive integer. We show how to decide whether $f$ extends to a $\mathbb{C}^m$ function on $\mathbb{R}^n$.
DOI : 10.4007/annals.2006.164.313

Charles Fefferman 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, United States
@article{10_4007_annals_2006_164_313,
     author = {Charles Fefferman},
     title = {Whitney{\textquoteright}s extension problem for $C^m$},
     journal = {Annals of mathematics},
     pages = {313--359},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2006},
     doi = {10.4007/annals.2006.164.313},
     mrnumber = {2233850},
     zbl = {1109.58016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.313/}
}
TY  - JOUR
AU  - Charles Fefferman
TI  - Whitney’s extension problem for $C^m$
JO  - Annals of mathematics
PY  - 2006
SP  - 313
EP  - 359
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.313/
DO  - 10.4007/annals.2006.164.313
LA  - en
ID  - 10_4007_annals_2006_164_313
ER  - 
%0 Journal Article
%A Charles Fefferman
%T Whitney’s extension problem for $C^m$
%J Annals of mathematics
%D 2006
%P 313-359
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.313/
%R 10.4007/annals.2006.164.313
%G en
%F 10_4007_annals_2006_164_313
Charles Fefferman. Whitney’s extension problem for $C^m$. Annals of mathematics, Tome 164 (2006) no. 1, pp. 313-359. doi : 10.4007/annals.2006.164.313. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.313/

Cité par Sources :