The Brjuno function continuously estimates the size of quadratic Siegel disks
Annals of mathematics, Tome 164 (2006) no. 1, pp. 265-312.

Voir la notice de l'article provenant de la source Annals of Mathematics website

If $\alpha$ is an irrational number, Yoccoz defined the Brjuno function $\Phi$ by \[\Phi(\alpha)=\sum_{n\geq 0} \alpha_0\alpha_1\cdots\alpha_{n-1}\log\frac{1}{\alpha_n},\] where $\alpha_0$ is the fractional part of $\alpha$ and $\alpha_{n+1}$ is the fractional part of ${1/\alpha_n}$. The numbers $\alpha$ such that $\Phi(\alpha)<+\infty$ are called the Brjuno numbers. The quadratic polynomial $P_\alpha:z\mapsto e^{2i\pi \alpha}z+z^2$ has an indifferent fixed point at the origin. If $P_\alpha$ is linearizable, we let $r(\alpha)$ be the conformal radius of the Siegel disk and we set $r(\alpha)=0$ otherwise. Yoccoz [Y] proved that $\Phi(\alpha)=+\infty$ if and only if $r(\alpha)=0$ and that the restriction of $\alpha\mapsto \Phi(\alpha)+\log r(\alpha)$ to the set of Brjuno numbers is bounded from below by a universal constant. In [BC2], we proved that it is also bounded from above by a universal constant. In fact, Marmi, Moussa and Yoccoz [MMY] conjecture that this function extends to $\mathbb{R}$ as a Hölder function of exponent $1/2$. In this article, we prove that there is a continuous extension to $\mathbb{R}$.
DOI : 10.4007/annals.2006.164.265

Xavier Buff 1 ; Arnaud Chéritat 2

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier, Laboratoire Emile Picard, 31062 Toulouse, France
2 nstitut de Mathématiques de Toulouse, Université Paul Sabatier, Laboratoire Emile Picard, 31062 Toulouse, France
@article{10_4007_annals_2006_164_265,
     author = {Xavier Buff and Arnaud Ch\'eritat},
     title = {The {Brjuno} function continuously estimates the size of quadratic {Siegel} disks},
     journal = {Annals of mathematics},
     pages = {265--312},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2006},
     doi = {10.4007/annals.2006.164.265},
     mrnumber = {2233849},
     zbl = {1109.37040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.265/}
}
TY  - JOUR
AU  - Xavier Buff
AU  - Arnaud Chéritat
TI  - The Brjuno function continuously estimates the size of quadratic Siegel disks
JO  - Annals of mathematics
PY  - 2006
SP  - 265
EP  - 312
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.265/
DO  - 10.4007/annals.2006.164.265
LA  - en
ID  - 10_4007_annals_2006_164_265
ER  - 
%0 Journal Article
%A Xavier Buff
%A Arnaud Chéritat
%T The Brjuno function continuously estimates the size of quadratic Siegel disks
%J Annals of mathematics
%D 2006
%P 265-312
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.265/
%R 10.4007/annals.2006.164.265
%G en
%F 10_4007_annals_2006_164_265
Xavier Buff; Arnaud Chéritat. The Brjuno function continuously estimates the size of quadratic Siegel disks. Annals of mathematics, Tome 164 (2006) no. 1, pp. 265-312. doi : 10.4007/annals.2006.164.265. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.265/

Cité par Sources :