Non-quasi-projective moduli spaces
Annals of mathematics, Tome 164 (2006) no. 3, pp. 1077-1096.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that every smooth toric variety (and many other algebraic spaces as well) can be realized as a moduli space for smooth, projective, polarized varieties. Some of these are not quasi-projective. This contradicts a recent paper (Quasi-projectivity of moduli spaces of polarized varieties, Ann. of Math.159 (2004) 597–639.).
DOI : 10.4007/annals.2006.164.1077

János Kollár 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, United States
@article{10_4007_annals_2006_164_1077,
     author = {J\'anos Koll\'ar},
     title = {Non-quasi-projective moduli spaces},
     journal = {Annals of mathematics},
     pages = {1077--1096},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2006},
     doi = {10.4007/annals.2006.164.1077},
     mrnumber = {2259254},
     zbl = {1140.14011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.1077/}
}
TY  - JOUR
AU  - János Kollár
TI  - Non-quasi-projective moduli spaces
JO  - Annals of mathematics
PY  - 2006
SP  - 1077
EP  - 1096
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.1077/
DO  - 10.4007/annals.2006.164.1077
LA  - en
ID  - 10_4007_annals_2006_164_1077
ER  - 
%0 Journal Article
%A János Kollár
%T Non-quasi-projective moduli spaces
%J Annals of mathematics
%D 2006
%P 1077-1096
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.1077/
%R 10.4007/annals.2006.164.1077
%G en
%F 10_4007_annals_2006_164_1077
János Kollár. Non-quasi-projective moduli spaces. Annals of mathematics, Tome 164 (2006) no. 3, pp. 1077-1096. doi : 10.4007/annals.2006.164.1077. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.1077/

Cité par Sources :