On a class of type $II_1$ factors with Betti numbers invariants
Annals of mathematics, Tome 163 (2006) no. 3, pp. 809-899.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that a type II$_1$ factor $M$ can have at most one Cartan subalgebra $A$ satisfying a combination of rigidity and compact approximation properties. We use this result to show that within the class $\mathcal{H} \mathcal{T}$ of factors $M$ having such Cartan subalgebras $A \subset M$, the Betti numbers of the standard equivalence relation associated with $A \subset M$ ([G2]), are in fact isomorphism invariants for the factors $M$, $\beta^{^{\rm HT}}_n(M), n\geq 0$. The class $\mathcal{H}\mathcal{T}$ is closed under amplifications and tensor products, with the Betti numbers satisfying $\beta^{^{\rm HT}}_n(M^t)= \beta^{^{\rm HT}}_n(M)/t$, $\forall t>0$, and a Künneth type formula. An example of a factor in the class $\mathcal{H}\mathcal{T}$ is given by the group von Neumann factor $M=L(\Bbb Z^2 \rtimes {\rm SL}(2, \Bbb Z))$, for which $\beta^{^{\rm HT}}_1(M) = \beta_1({\rm SL}(2, \Bbb Z)) = 1/12$. Thus, $M^t \not\simeq M, \forall t \neq 1$, showing that the fundamental group of $M$ is trivial. This solves a long standing problem of R. V. Kadison. Also, our results bring some insight into a recent problem of A. Connes and answer a number of open questions on von Neumann algebras.
DOI : 10.4007/annals.2006.163.809

Sorin Popa 1

1 Department of Mathematics, University of California, Los Angeles, CA 90095, United States
@article{10_4007_annals_2006_163_809,
     author = {Sorin Popa},
     title = {On a class of type $II_1$ factors with {Betti} numbers invariants},
     journal = {Annals of mathematics},
     pages = {809--899},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2006},
     doi = {10.4007/annals.2006.163.809},
     mrnumber = {2215135},
     zbl = {1120.46045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.809/}
}
TY  - JOUR
AU  - Sorin Popa
TI  - On a class of type $II_1$ factors with Betti numbers invariants
JO  - Annals of mathematics
PY  - 2006
SP  - 809
EP  - 899
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.809/
DO  - 10.4007/annals.2006.163.809
LA  - en
ID  - 10_4007_annals_2006_163_809
ER  - 
%0 Journal Article
%A Sorin Popa
%T On a class of type $II_1$ factors with Betti numbers invariants
%J Annals of mathematics
%D 2006
%P 809-899
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.809/
%R 10.4007/annals.2006.163.809
%G en
%F 10_4007_annals_2006_163_809
Sorin Popa. On a class of type $II_1$ factors with Betti numbers invariants. Annals of mathematics, Tome 163 (2006) no. 3, pp. 809-899. doi : 10.4007/annals.2006.163.809. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.809/

Cité par Sources :