Runge approximation on convex sets implies the Oka property
Annals of mathematics, Tome 163 (2006) no. 2, pp. 689-707.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the classical Oka property of a complex manifold $Y\!$, concerning the existence and homotopy classification of holomorphic mappings from Stein manifolds to $Y\!$, is equivalent to a Runge approximation property for holomorphic maps from compact convex sets in Euclidean spaces to $Y$.
DOI : 10.4007/annals.2006.163.689

Franc Forstnerič 1

1 Institute of Mathematics, Physics and Mechanics, University of Ljubljani, SI-1000 Ljubljana, Slovenia
@article{10_4007_annals_2006_163_689,
     author = {Franc Forstneri\v{c}},
     title = {Runge approximation on convex sets implies the {Oka} property},
     journal = {Annals of mathematics},
     pages = {689--707},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2006},
     doi = {10.4007/annals.2006.163.689},
     mrnumber = {2199229},
     zbl = {1103.32004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.689/}
}
TY  - JOUR
AU  - Franc Forstnerič
TI  - Runge approximation on convex sets implies the Oka property
JO  - Annals of mathematics
PY  - 2006
SP  - 689
EP  - 707
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.689/
DO  - 10.4007/annals.2006.163.689
LA  - en
ID  - 10_4007_annals_2006_163_689
ER  - 
%0 Journal Article
%A Franc Forstnerič
%T Runge approximation on convex sets implies the Oka property
%J Annals of mathematics
%D 2006
%P 689-707
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.689/
%R 10.4007/annals.2006.163.689
%G en
%F 10_4007_annals_2006_163_689
Franc Forstnerič. Runge approximation on convex sets implies the Oka property. Annals of mathematics, Tome 163 (2006) no. 2, pp. 689-707. doi : 10.4007/annals.2006.163.689. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.689/

Cité par Sources :