Decay of geometry for unimodal maps: An elementary proof
Annals of mathematics, Tome 163 (2006) no. 2, pp. 383-404.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that a nonrenormalizable smooth unimodal interval map with critical order between $1$ and $2$ displays decay of geometry, by an elementary and purely “real” argument. This completes a “real” approach to Milnor’s attractor problem for smooth unimodal maps with critical order not greater than $2$.
DOI : 10.4007/annals.2006.163.383

Weixiao Shen 1

1 Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
@article{10_4007_annals_2006_163_383,
     author = {Weixiao Shen},
     title = {Decay of geometry for unimodal maps: {An} elementary proof},
     journal = {Annals of mathematics},
     pages = {383--404},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2006},
     doi = {10.4007/annals.2006.163.383},
     mrnumber = {2199221},
     zbl = {1097.37032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.383/}
}
TY  - JOUR
AU  - Weixiao Shen
TI  - Decay of geometry for unimodal maps: An elementary proof
JO  - Annals of mathematics
PY  - 2006
SP  - 383
EP  - 404
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.383/
DO  - 10.4007/annals.2006.163.383
LA  - en
ID  - 10_4007_annals_2006_163_383
ER  - 
%0 Journal Article
%A Weixiao Shen
%T Decay of geometry for unimodal maps: An elementary proof
%J Annals of mathematics
%D 2006
%P 383-404
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.383/
%R 10.4007/annals.2006.163.383
%G en
%F 10_4007_annals_2006_163_383
Weixiao Shen. Decay of geometry for unimodal maps: An elementary proof. Annals of mathematics, Tome 163 (2006) no. 2, pp. 383-404. doi : 10.4007/annals.2006.163.383. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.383/

Cité par Sources :