Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature
Annals of mathematics, Tome 163 (2006) no. 1, pp. 37-163.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For the complex parabolic Ginzburg-Landau equation, we prove that, asymptotically, vorticity evolves according to motion by mean curvature in Brakke’s weak formulation. The only assumption is a natural energy bound on the initial data. In some cases, we also prove convergence to enhanced motion in the sense of Ilmanen.
DOI : 10.4007/annals.2006.163.37

Fabrice Bethuel 1 ; Giandomenico Orlandi 2 ; Didier Smets 3

1 Laboratoire J.-L. Lions, Université Pierre et Marie Curie, 75013 Paris, France and Institut Universitaire de France, 75005 Paris, France
2 Dipartimento di Informatica, Università di Verona, 37129 Verona, Italy
3 Laboratoire J.-L. Lions, Université Pierre et Marie Curie, 75013 Paris, France
@article{10_4007_annals_2006_163_37,
     author = {Fabrice Bethuel and Giandomenico Orlandi and Didier Smets},
     title = {Convergence of the parabolic {Ginzburg{\textendash}Landau} equation to motion by mean curvature},
     journal = {Annals of mathematics},
     pages = {37--163},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2006},
     doi = {10.4007/annals.2006.163.37},
     mrnumber = {2195132},
     zbl = {1103.35038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.37/}
}
TY  - JOUR
AU  - Fabrice Bethuel
AU  - Giandomenico Orlandi
AU  - Didier Smets
TI  - Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature
JO  - Annals of mathematics
PY  - 2006
SP  - 37
EP  - 163
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.37/
DO  - 10.4007/annals.2006.163.37
LA  - en
ID  - 10_4007_annals_2006_163_37
ER  - 
%0 Journal Article
%A Fabrice Bethuel
%A Giandomenico Orlandi
%A Didier Smets
%T Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature
%J Annals of mathematics
%D 2006
%P 37-163
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.37/
%R 10.4007/annals.2006.163.37
%G en
%F 10_4007_annals_2006_163_37
Fabrice Bethuel; Giandomenico Orlandi; Didier Smets. Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature. Annals of mathematics, Tome 163 (2006) no. 1, pp. 37-163. doi : 10.4007/annals.2006.163.37. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.37/

Cité par Sources :