A refined version of the Siegel–Shidlovskii theorem
Annals of mathematics, Tome 163 (2006) no. 1, pp. 369-379.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Using Y. André’s result on differential equations satisfied by $E$-functions, we derive an improved version of the Siegel-Shidlovskii theorem. It gives a complete characterisation of algebraic relations over the algebraic numbers between values of $E$-functions at any nonzero algebraic point.
DOI : 10.4007/annals.2006.163.369

Frits Beukers 1

1 Mathematisch Instituut, Universiteit Utrecht, 3508 Utrecht, Netherlands
@article{10_4007_annals_2006_163_369,
     author = {Frits Beukers},
     title = {A refined version of the {Siegel{\textendash}Shidlovskii} theorem},
     journal = {Annals of mathematics},
     pages = {369--379},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2006},
     doi = {10.4007/annals.2006.163.369},
     mrnumber = {2195138},
     zbl = {1133.11044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.369/}
}
TY  - JOUR
AU  - Frits Beukers
TI  - A refined version of the Siegel–Shidlovskii theorem
JO  - Annals of mathematics
PY  - 2006
SP  - 369
EP  - 379
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.369/
DO  - 10.4007/annals.2006.163.369
LA  - en
ID  - 10_4007_annals_2006_163_369
ER  - 
%0 Journal Article
%A Frits Beukers
%T A refined version of the Siegel–Shidlovskii theorem
%J Annals of mathematics
%D 2006
%P 369-379
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.369/
%R 10.4007/annals.2006.163.369
%G en
%F 10_4007_annals_2006_163_369
Frits Beukers. A refined version of the Siegel–Shidlovskii theorem. Annals of mathematics, Tome 163 (2006) no. 1, pp. 369-379. doi : 10.4007/annals.2006.163.369. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.369/

Cité par Sources :