Finite and infinite arithmetic progressions in sumsets
Annals of mathematics, Tome 163 (2006) no. 1, pp. 1-35.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that if $A$ is a subset of at least $cn^{1/2}$ elements of $\{1, \dots, n\}$, where $c$ is a sufficiently large constant, then the collection of subset sums of $A$ contains an arithmetic progression of length $n$. As an application, we confirm a long standing conjecture of Erdős and Folkman on complete sequences.
DOI : 10.4007/annals.2006.163.1

Endre Szemerédi 1 ; Van H. Vu 2

1 Computer Science Department, Rutgers University, Piscataway, NJ 08854, United States
2 Department of Mathematics, UCSD, La Jolla, CA 92093<, United States
@article{10_4007_annals_2006_163_1,
     author = {Endre Szemer\'edi and Van H. Vu},
     title = {Finite and infinite arithmetic progressions in sumsets},
     journal = {Annals of mathematics},
     pages = {1--35},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2006},
     doi = {10.4007/annals.2006.163.1},
     mrnumber = {2195131},
     zbl = {1146.11006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.1/}
}
TY  - JOUR
AU  - Endre Szemerédi
AU  - Van H. Vu
TI  - Finite and infinite arithmetic progressions in sumsets
JO  - Annals of mathematics
PY  - 2006
SP  - 1
EP  - 35
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.1/
DO  - 10.4007/annals.2006.163.1
LA  - en
ID  - 10_4007_annals_2006_163_1
ER  - 
%0 Journal Article
%A Endre Szemerédi
%A Van H. Vu
%T Finite and infinite arithmetic progressions in sumsets
%J Annals of mathematics
%D 2006
%P 1-35
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.1/
%R 10.4007/annals.2006.163.1
%G en
%F 10_4007_annals_2006_163_1
Endre Szemerédi; Van H. Vu. Finite and infinite arithmetic progressions in sumsets. Annals of mathematics, Tome 163 (2006) no. 1, pp. 1-35. doi : 10.4007/annals.2006.163.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.1/

Cité par Sources :