Inverse spectral problems and closed exponential systems
Annals of mathematics, Tome 162 (2005) no. 2, pp. 885-918.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Consider the inverse eigenvalue problem of the Schrödinger operator defined on a finite interval. We give optimal and almost optimal conditions for a set of eigenvalues to determine the Schrödinger operator. These conditions are simple closedness properties of the exponential system corresponding to the known eigenvalues. The statements contain nearly all former results of this topic. We give also conditions for recovering the Weyl-Titchmarsh $m$-function from its values $m(\lambda_n)$.
DOI : 10.4007/annals.2005.162.885

Miklós Horváth 1

1 Institute of Mathematics, Technical University of Budapest, 1111 Budapest, Hungary
@article{10_4007_annals_2005_162_885,
     author = {Mikl\'os Horv\'ath},
     title = {Inverse spectral problems and closed exponential systems},
     journal = {Annals of mathematics},
     pages = {885--918},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2005},
     doi = {10.4007/annals.2005.162.885},
     mrnumber = {2183284},
     zbl = {1102.34005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.885/}
}
TY  - JOUR
AU  - Miklós Horváth
TI  - Inverse spectral problems and closed exponential systems
JO  - Annals of mathematics
PY  - 2005
SP  - 885
EP  - 918
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.885/
DO  - 10.4007/annals.2005.162.885
LA  - en
ID  - 10_4007_annals_2005_162_885
ER  - 
%0 Journal Article
%A Miklós Horváth
%T Inverse spectral problems and closed exponential systems
%J Annals of mathematics
%D 2005
%P 885-918
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.885/
%R 10.4007/annals.2005.162.885
%G en
%F 10_4007_annals_2005_162_885
Miklós Horváth. Inverse spectral problems and closed exponential systems. Annals of mathematics, Tome 162 (2005) no. 2, pp. 885-918. doi : 10.4007/annals.2005.162.885. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.885/

Cité par Sources :