A resolution of the K(2)-local sphere at the prime 3
Annals of mathematics, Tome 162 (2005) no. 2, pp. 777-822.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We develop a framework for displaying the stable homotopy theory of the sphere, at least after localization at the second Morava $K$-theory $K(2)$. At the prime $3$, we write the spectrum $L_{K(2)}S^0$ as the inverse limit of a tower of fibrations with four layers. The successive fibers are of the form $E_2^{hF}$ where $F$ is a finite subgroup of the Morava stabilizer group and $E_2$ is the second Morava or Lubin-Tate homology theory. We give explicit calculation of the homotopy groups of these fibers. The case $n=2$ at $p=3$ represents the edge of our current knowledge: $n=1$ is classical and at $n=2$, the prime $3$ is the largest prime where the Morava stabilizer group has a $p$-torsion subgroup, so that the homotopy theory is not entirely algebraic.
DOI : 10.4007/annals.2005.162.777

Paul Goerss 1 ; Hans-Werner Henn 2 ; Mark Mahowald 3 ; Charles Rezk 4

1 Department of Mathematics, Northwestern University, Evanston, IL 60208, United States
2 Institut de Recherche Mathématique Avancée, Université Louis Pasteur, 67084 Strasbourg, France
3 Department of Mathematics, Northwestern University, Evanston IL 60208, United States
4 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
@article{10_4007_annals_2005_162_777,
     author = {Paul Goerss and Hans-Werner Henn and Mark Mahowald and Charles Rezk},
     title = {A resolution of the {K(2)-local} sphere at the prime 3},
     journal = {Annals of mathematics},
     pages = {777--822},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2005},
     doi = {10.4007/annals.2005.162.777},
     mrnumber = {2183282},
     zbl = {1108.55009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.777/}
}
TY  - JOUR
AU  - Paul Goerss
AU  - Hans-Werner Henn
AU  - Mark Mahowald
AU  - Charles Rezk
TI  - A resolution of the K(2)-local sphere at the prime 3
JO  - Annals of mathematics
PY  - 2005
SP  - 777
EP  - 822
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.777/
DO  - 10.4007/annals.2005.162.777
LA  - en
ID  - 10_4007_annals_2005_162_777
ER  - 
%0 Journal Article
%A Paul Goerss
%A Hans-Werner Henn
%A Mark Mahowald
%A Charles Rezk
%T A resolution of the K(2)-local sphere at the prime 3
%J Annals of mathematics
%D 2005
%P 777-822
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.777/
%R 10.4007/annals.2005.162.777
%G en
%F 10_4007_annals_2005_162_777
Paul Goerss; Hans-Werner Henn; Mark Mahowald; Charles Rezk. A resolution of the K(2)-local sphere at the prime 3. Annals of mathematics, Tome 162 (2005) no. 2, pp. 777-822. doi : 10.4007/annals.2005.162.777. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.777/

Cité par Sources :