The Schrödinger propagator for scattering metrics
Annals of mathematics, Tome 162 (2005) no. 1, pp. 487-523.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $g$ be a scattering metric on a compact manifold $X$ with boundary, i.e., a smooth metric giving the interior $X^\circ$ the structure of a complete Riemannian manifold with asymptotically conic ends. An example is any compactly supported perturbation of the standard metric on $\mathrm{R}^n$. Consider the operator $H = \frac{1}{2} \Delta + V$, where $\Delta$ is the positive Laplacian with respect to $g$ and $V$ is a smooth real-valued function on $X$ vanishing to second order at $\partial X$. Assuming that $g$ is nontrapping, we construct a global parametrix $\mathcal{U}(z, w,t)$ for the kernel of the Schrödinger propagator $U(t) = e^{-i t H}$, where $z, w \in X^{\circ}$ and $t \neq 0$. The parametrix is such that the difference between $\mathcal{U}$ and $U$ is smooth and rapidly decreasing both as $t \to 0$ and as $z \to \partial X$, uniformly for $w$ on compact subsets of $X^{\circ}$. Let $r = x^{-1}$, where $x$ is a boundary defining function for $X$, be an asymptotic radial variable, and let $W(t)$ be the kernel $e^{-ir^2/2t}U(t)$. Using the parametrix, we show that $W(t)$ belongs to a class of ‘Legendre distributions’ on $X \times X^{\circ} \times \mathbb{R}_{\geq 0}$ previously considered by Hassell-Vasy. When the metric is trapping, then the parametrix construction goes through microlocally in the nontrapping part of the phase space.
DOI : 10.4007/annals.2005.162.487

Andrew Hassell 1 ; Jared Wunsch 2

1 Mathematical Sciences Institute, Australian National University, Canberra 0200 ACT, Australia
2 Department of Mathematics, Northwestern University, Evanston, IL 60208, United States
@article{10_4007_annals_2005_162_487,
     author = {Andrew Hassell and Jared Wunsch},
     title = {The {Schr\"odinger} propagator for scattering metrics},
     journal = {Annals of mathematics},
     pages = {487--523},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2005},
     doi = {10.4007/annals.2005.162.487},
     mrnumber = {2178967},
     zbl = {1126.58016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/}
}
TY  - JOUR
AU  - Andrew Hassell
AU  - Jared Wunsch
TI  - The Schrödinger propagator for scattering metrics
JO  - Annals of mathematics
PY  - 2005
SP  - 487
EP  - 523
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/
DO  - 10.4007/annals.2005.162.487
LA  - en
ID  - 10_4007_annals_2005_162_487
ER  - 
%0 Journal Article
%A Andrew Hassell
%A Jared Wunsch
%T The Schrödinger propagator for scattering metrics
%J Annals of mathematics
%D 2005
%P 487-523
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/
%R 10.4007/annals.2005.162.487
%G en
%F 10_4007_annals_2005_162_487
Andrew Hassell; Jared Wunsch. The Schrödinger propagator for scattering metrics. Annals of mathematics, Tome 162 (2005) no. 1, pp. 487-523. doi : 10.4007/annals.2005.162.487. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/

Cité par Sources :