Sharp local well-posedness results for the nonlinear wave equation
Annals of mathematics, Tome 162 (2005) no. 1, pp. 291-366.

Voir la notice de l'article provenant de la source Annals of Mathematics website

This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.
DOI : 10.4007/annals.2005.162.291

Hart F. Smith 1 ; Daniel Tataru 2

1 Department of Mathematics, University of Washington, Seattle, WA 98195, United States
2 Department of Mathematics, University of California, Berkeley, CA 94720, United States
@article{10_4007_annals_2005_162_291,
     author = {Hart F. Smith and Daniel Tataru},
     title = {Sharp local well-posedness results for the nonlinear wave equation},
     journal = {Annals of mathematics},
     pages = {291--366},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2005},
     doi = {10.4007/annals.2005.162.291},
     mrnumber = {2178963},
     zbl = {1098.35113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.291/}
}
TY  - JOUR
AU  - Hart F. Smith
AU  - Daniel Tataru
TI  - Sharp local well-posedness results for the nonlinear wave equation
JO  - Annals of mathematics
PY  - 2005
SP  - 291
EP  - 366
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.291/
DO  - 10.4007/annals.2005.162.291
LA  - en
ID  - 10_4007_annals_2005_162_291
ER  - 
%0 Journal Article
%A Hart F. Smith
%A Daniel Tataru
%T Sharp local well-posedness results for the nonlinear wave equation
%J Annals of mathematics
%D 2005
%P 291-366
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.291/
%R 10.4007/annals.2005.162.291
%G en
%F 10_4007_annals_2005_162_291
Hart F. Smith; Daniel Tataru. Sharp local well-posedness results for the nonlinear wave equation. Annals of mathematics, Tome 162 (2005) no. 1, pp. 291-366. doi : 10.4007/annals.2005.162.291. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.291/

Cité par Sources :