Cabling and transverse simplicity
Annals of mathematics, Tome 162 (2005) no. 3, pp. 1305-1333.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study Legendrian knots in a cabled knot type. Specifically, given a topological knot type $\mathcal{K}$, we analyze the Legendrian knots in knot types obtained from $\mathcal{K}$ by cabling, in terms of Legendrian knots in the knot type $\mathcal{K}$. As a corollary of this analysis, we show that the $(2,3)$-cable of the $(2,3)$-torus knot is not transversely simple and moreover classify the transverse knots in this knot type. This is the first classification of transverse knots in a non-transversely-simple knot type. We also classify Legendrian knots in this knot type and exhibit the first example of a Legendrian knot that does not destabilize, yet its Thurston-Bennequin invariant is not maximal among Legendrian representatives in its knot type.
DOI : 10.4007/annals.2005.162.1305

John B. Etnyre 1 ; Ko Honda 2

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
2 Department of Mathematics, University of Southern California, Los Angeles, CA 90089
@article{10_4007_annals_2005_162_1305,
     author = {John B. Etnyre and Ko Honda},
     title = {Cabling and transverse simplicity},
     journal = {Annals of mathematics},
     pages = {1305--1333},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2005},
     doi = {10.4007/annals.2005.162.1305},
     mrnumber = {2179731},
     zbl = {1104.57012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1305/}
}
TY  - JOUR
AU  - John B. Etnyre
AU  - Ko Honda
TI  - Cabling and transverse simplicity
JO  - Annals of mathematics
PY  - 2005
SP  - 1305
EP  - 1333
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1305/
DO  - 10.4007/annals.2005.162.1305
LA  - en
ID  - 10_4007_annals_2005_162_1305
ER  - 
%0 Journal Article
%A John B. Etnyre
%A Ko Honda
%T Cabling and transverse simplicity
%J Annals of mathematics
%D 2005
%P 1305-1333
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1305/
%R 10.4007/annals.2005.162.1305
%G en
%F 10_4007_annals_2005_162_1305
John B. Etnyre; Ko Honda. Cabling and transverse simplicity. Annals of mathematics, Tome 162 (2005) no. 3, pp. 1305-1333. doi : 10.4007/annals.2005.162.1305. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1305/

Cité par Sources :