Bilipschitz maps, analytic capacity, and the Cauchy integral
Annals of mathematics, Tome 162 (2005) no. 3, pp. 1243-1304.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\varphi:\mathbb{C}\rightarrow \mathbb{C}$ be a bilipschitz map. We prove that if $E\subset\mathbb{C}$ is compact, and $\gamma(E)$, $\alpha(E)$ stand for its analytic and continuous analytic capacity respectively, then $C^{-1}\gamma(E)\leq \gamma(\varphi(E)) \leq C\gamma(E)$ and $C^{-1}\alpha(E)\leq \alpha(\varphi(E)) \leq C\alpha(E)$, where $C$ depends only on the bilipschitz constant of $\varphi$. Further, we show that if $\mu$ is a Radon measure on $\mathbb{C}$ and the Cauchy transform is bounded on $L^2(\mu)$, then the Cauchy transform is also bounded on $L^2(\varphi_\sharp\mu)$, where $\varphi_\sharp\mu$ is the image measure of $\mu$ by $\varphi$. To obtain these results, we estimate the curvature of $\varphi_\sharp\mu$ by means of a corona type decomposition.
DOI : 10.4007/annals.2005.162.1243

Xavier Tolsa 1

1 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
@article{10_4007_annals_2005_162_1243,
     author = {Xavier Tolsa},
     title = {Bilipschitz maps, analytic capacity, and the {Cauchy} integral},
     journal = {Annals of mathematics},
     pages = {1243--1304},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2005},
     doi = {10.4007/annals.2005.162.1243},
     mrnumber = {2179730},
     zbl = {1097.30020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1243/}
}
TY  - JOUR
AU  - Xavier Tolsa
TI  - Bilipschitz maps, analytic capacity, and the Cauchy integral
JO  - Annals of mathematics
PY  - 2005
SP  - 1243
EP  - 1304
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1243/
DO  - 10.4007/annals.2005.162.1243
LA  - en
ID  - 10_4007_annals_2005_162_1243
ER  - 
%0 Journal Article
%A Xavier Tolsa
%T Bilipschitz maps, analytic capacity, and the Cauchy integral
%J Annals of mathematics
%D 2005
%P 1243-1304
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1243/
%R 10.4007/annals.2005.162.1243
%G en
%F 10_4007_annals_2005_162_1243
Xavier Tolsa. Bilipschitz maps, analytic capacity, and the Cauchy integral. Annals of mathematics, Tome 162 (2005) no. 3, pp. 1243-1304. doi : 10.4007/annals.2005.162.1243. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1243/

Cité par Sources :