Curve shortening and the topology of closed geodesics on surfaces
Annals of mathematics, Tome 162 (2005) no. 3, pp. 1187-1241.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study “flat knot types” of geodesics on compact surfaces $M^2$. For every flat knot type and any Riemannian metric $g$ we introduce a Conley index associated with the curve shortening flow on the space of immersed curves on $M^{2}$. We conclude existence of closed geodesics with prescribed flat knot types, provided the associated Conley index is nontrivial.
DOI : 10.4007/annals.2005.162.1187

Sigurd B. Angenent 1

1 Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706
@article{10_4007_annals_2005_162_1187,
     author = {Sigurd B. Angenent},
     title = {Curve shortening and the topology of closed geodesics on surfaces},
     journal = {Annals of mathematics},
     pages = {1187--1241},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2005},
     doi = {10.4007/annals.2005.162.1187},
     mrnumber = {2179729},
     zbl = {1137.53330},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1187/}
}
TY  - JOUR
AU  - Sigurd B. Angenent
TI  - Curve shortening and the topology of closed geodesics on surfaces
JO  - Annals of mathematics
PY  - 2005
SP  - 1187
EP  - 1241
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1187/
DO  - 10.4007/annals.2005.162.1187
LA  - en
ID  - 10_4007_annals_2005_162_1187
ER  - 
%0 Journal Article
%A Sigurd B. Angenent
%T Curve shortening and the topology of closed geodesics on surfaces
%J Annals of mathematics
%D 2005
%P 1187-1241
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1187/
%R 10.4007/annals.2005.162.1187
%G en
%F 10_4007_annals_2005_162_1187
Sigurd B. Angenent. Curve shortening and the topology of closed geodesics on surfaces. Annals of mathematics, Tome 162 (2005) no. 3, pp. 1187-1241. doi : 10.4007/annals.2005.162.1187. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.1187/

Cité par Sources :