Quasi-isometry invariance of group splittings
Annals of mathematics, Tome 161 (2005) no. 2, pp. 759-830.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that a finitely presented one-ended group which is not commensurable to a surface group splits over a two-ended group if and only if its Cayley graph is separated by a quasi-line. This shows in particular that splittings over two-ended groups are preserved by quasi-isometries.
DOI : 10.4007/annals.2005.161.759

Panos Papasoglu 1

1 Mathematics Department, National and Capodistrian University of Athens, Athens, Greece
@article{10_4007_annals_2005_161_759,
     author = {Panos Papasoglu},
     title = {Quasi-isometry invariance of group splittings},
     journal = {Annals of mathematics},
     pages = {759--830},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2005},
     doi = {10.4007/annals.2005.161.759},
     mrnumber = {2153400},
     zbl = {1129.20027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.759/}
}
TY  - JOUR
AU  - Panos Papasoglu
TI  - Quasi-isometry invariance of group splittings
JO  - Annals of mathematics
PY  - 2005
SP  - 759
EP  - 830
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.759/
DO  - 10.4007/annals.2005.161.759
LA  - en
ID  - 10_4007_annals_2005_161_759
ER  - 
%0 Journal Article
%A Panos Papasoglu
%T Quasi-isometry invariance of group splittings
%J Annals of mathematics
%D 2005
%P 759-830
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.759/
%R 10.4007/annals.2005.161.759
%G en
%F 10_4007_annals_2005_161_759
Panos Papasoglu. Quasi-isometry invariance of group splittings. Annals of mathematics, Tome 161 (2005) no. 2, pp. 759-830. doi : 10.4007/annals.2005.161.759. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.759/

Cité par Sources :