Topological equivalence of linear representations for cyclic groups: I
Annals of mathematics, Tome 161 (2005) no. 1, pp. 61-104.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In the two parts of this paper we prove that the Reidemeister torsion invariants determine topological equivalence of $G$-representations, for $G$ a finite cyclic group.
DOI : 10.4007/annals.2005.161.61

Ian Hambleton 1 ; Erik K. Pedersen 2

1 McMaster University, Department of Mathematics and Statistics, Hamilton, Ontario L8S 4K1, Canada
2 Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902, United States
@article{10_4007_annals_2005_161_61,
     author = {Ian Hambleton and Erik K. Pedersen},
     title = {Topological equivalence of linear representations for cyclic groups: {I}},
     journal = {Annals of mathematics},
     pages = {61--104},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {2005},
     doi = {10.4007/annals.2005.161.61},
     mrnumber = {2150384},
     zbl = {1081.57027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.61/}
}
TY  - JOUR
AU  - Ian Hambleton
AU  - Erik K. Pedersen
TI  - Topological equivalence of linear representations for cyclic groups: I
JO  - Annals of mathematics
PY  - 2005
SP  - 61
EP  - 104
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.61/
DO  - 10.4007/annals.2005.161.61
LA  - en
ID  - 10_4007_annals_2005_161_61
ER  - 
%0 Journal Article
%A Ian Hambleton
%A Erik K. Pedersen
%T Topological equivalence of linear representations for cyclic groups: I
%J Annals of mathematics
%D 2005
%P 61-104
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.61/
%R 10.4007/annals.2005.161.61
%G en
%F 10_4007_annals_2005_161_61
Ian Hambleton; Erik K. Pedersen. Topological equivalence of linear representations for cyclic groups: I. Annals of mathematics, Tome 161 (2005) no. 1, pp. 61-104. doi : 10.4007/annals.2005.161.61. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.61/

Cité par Sources :