McKay correspondence for elliptic genera
Annals of mathematics, Tome 161 (2005) no. 3, pp. 1521-1569
Cet article a éte moissonné depuis la source Annals of Mathematics website
We establish a correspondence between orbifold and singular elliptic genera of a global quotient. While the former is defined in terms of the fixed point set of the action, the latter is defined in terms of the resolution of singularities. As a byproduct, the second quantization formula of Dijkgraaf, Moore, Verlinde and Verlinde is extended to arbitrary Kawamata log-terminal pairs.
DOI :
10.4007/annals.2005.161.1521
Affiliations des auteurs :
Lev Borisov 1 ; Anatoly Libgober 2
@article{10_4007_annals_2005_161_1521,
author = {Lev Borisov and Anatoly Libgober},
title = {McKay correspondence for elliptic genera},
journal = {Annals of mathematics},
pages = {1521--1569},
year = {2005},
volume = {161},
number = {3},
doi = {10.4007/annals.2005.161.1521},
mrnumber = {2180406},
zbl = {1153.58301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1521/}
}
TY - JOUR AU - Lev Borisov AU - Anatoly Libgober TI - McKay correspondence for elliptic genera JO - Annals of mathematics PY - 2005 SP - 1521 EP - 1569 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1521/ DO - 10.4007/annals.2005.161.1521 LA - en ID - 10_4007_annals_2005_161_1521 ER -
Lev Borisov; Anatoly Libgober. McKay correspondence for elliptic genera. Annals of mathematics, Tome 161 (2005) no. 3, pp. 1521-1569. doi: 10.4007/annals.2005.161.1521
Cité par Sources :