McKay correspondence for elliptic genera
Annals of mathematics, Tome 161 (2005) no. 3, pp. 1521-1569 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We establish a correspondence between orbifold and singular elliptic genera of a global quotient. While the former is defined in terms of the fixed point set of the action, the latter is defined in terms of the resolution of singularities. As a byproduct, the second quantization formula of Dijkgraaf, Moore, Verlinde and Verlinde is extended to arbitrary Kawamata log-terminal pairs.

DOI : 10.4007/annals.2005.161.1521

Lev Borisov 1 ; Anatoly Libgober 2

1 Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States
2 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States
@article{10_4007_annals_2005_161_1521,
     author = {Lev Borisov and Anatoly Libgober},
     title = {McKay correspondence for elliptic genera},
     journal = {Annals of mathematics},
     pages = {1521--1569},
     year = {2005},
     volume = {161},
     number = {3},
     doi = {10.4007/annals.2005.161.1521},
     mrnumber = {2180406},
     zbl = {1153.58301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1521/}
}
TY  - JOUR
AU  - Lev Borisov
AU  - Anatoly Libgober
TI  - McKay correspondence for elliptic genera
JO  - Annals of mathematics
PY  - 2005
SP  - 1521
EP  - 1569
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1521/
DO  - 10.4007/annals.2005.161.1521
LA  - en
ID  - 10_4007_annals_2005_161_1521
ER  - 
%0 Journal Article
%A Lev Borisov
%A Anatoly Libgober
%T McKay correspondence for elliptic genera
%J Annals of mathematics
%D 2005
%P 1521-1569
%V 161
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1521/
%R 10.4007/annals.2005.161.1521
%G en
%F 10_4007_annals_2005_161_1521
Lev Borisov; Anatoly Libgober. McKay correspondence for elliptic genera. Annals of mathematics, Tome 161 (2005) no. 3, pp. 1521-1569. doi: 10.4007/annals.2005.161.1521

Cité par Sources :