Gröbner geometry of Schubert polynomials
Annals of mathematics, Tome 161 (2005) no. 3, pp. 1245-1318.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Given a permutation $w \in S_n$, we consider a determinantal ideal $I_w$ whose generators are certain minors in the generic $n \times n$ matrix (filled with independent variables). Using ‘multidegrees’ as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, for each ideal $I_w$:
DOI : 10.4007/annals.2005.161.1245

Allen Knutson 1 ; Ezra Miller 2

1 Department of Mathematics, University of California, Berkeley, CA 94720, United States
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
@article{10_4007_annals_2005_161_1245,
     author = {Allen Knutson and Ezra Miller},
     title = {Gr\"obner geometry of {Schubert} polynomials},
     journal = {Annals of mathematics},
     pages = {1245--1318},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2005},
     doi = {10.4007/annals.2005.161.1245},
     mrnumber = {2180402},
     zbl = {1089.14007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1245/}
}
TY  - JOUR
AU  - Allen Knutson
AU  - Ezra Miller
TI  - Gröbner geometry of Schubert polynomials
JO  - Annals of mathematics
PY  - 2005
SP  - 1245
EP  - 1318
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1245/
DO  - 10.4007/annals.2005.161.1245
LA  - en
ID  - 10_4007_annals_2005_161_1245
ER  - 
%0 Journal Article
%A Allen Knutson
%A Ezra Miller
%T Gröbner geometry of Schubert polynomials
%J Annals of mathematics
%D 2005
%P 1245-1318
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1245/
%R 10.4007/annals.2005.161.1245
%G en
%F 10_4007_annals_2005_161_1245
Allen Knutson; Ezra Miller. Gröbner geometry of Schubert polynomials. Annals of mathematics, Tome 161 (2005) no. 3, pp. 1245-1318. doi : 10.4007/annals.2005.161.1245. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1245/

Cité par Sources :