Two dimensional compact simple Riemannian manifolds are boundary distance rigid
Annals of mathematics, Tome 161 (2005) no. 2, pp. 1093-1110.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that knowing the lengths of geodesics joining points of the boundary of a two-dimensional, compact, simple Riemannian manifold with boundary, we can determine uniquely the Riemannian metric up to the natural obstruction.
DOI : 10.4007/annals.2005.161.1093

Leonid Pestov 1 ; Gunther Uhlmann 2

1 UGRA Research Institute of Information Technologies, Hanty-Mansiysk 628011, Russian Federation
2 Department of Mathematics, University of Washington, Seattle, WA 98195, United States
@article{10_4007_annals_2005_161_1093,
     author = {Leonid Pestov and Gunther Uhlmann},
     title = {Two dimensional compact simple {Riemannian} manifolds are boundary distance rigid},
     journal = {Annals of mathematics},
     pages = {1093--1110},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2005},
     doi = {10.4007/annals.2005.161.1093},
     mrnumber = {2153407},
     zbl = {1076.53044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1093/}
}
TY  - JOUR
AU  - Leonid Pestov
AU  - Gunther Uhlmann
TI  - Two dimensional compact simple Riemannian manifolds are boundary distance rigid
JO  - Annals of mathematics
PY  - 2005
SP  - 1093
EP  - 1110
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1093/
DO  - 10.4007/annals.2005.161.1093
LA  - en
ID  - 10_4007_annals_2005_161_1093
ER  - 
%0 Journal Article
%A Leonid Pestov
%A Gunther Uhlmann
%T Two dimensional compact simple Riemannian manifolds are boundary distance rigid
%J Annals of mathematics
%D 2005
%P 1093-1110
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1093/
%R 10.4007/annals.2005.161.1093
%G en
%F 10_4007_annals_2005_161_1093
Leonid Pestov; Gunther Uhlmann. Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Annals of mathematics, Tome 161 (2005) no. 2, pp. 1093-1110. doi : 10.4007/annals.2005.161.1093. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1093/

Cité par Sources :