A $p$-adic local monodromy theorem
Annals of mathematics, Tome 160 (2004) no. 1, pp. 93-184.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We produce a canonical filtration for locally free sheaves on an open $p$-adic annulus equipped with a Frobenius structure. Using this filtration, we deduce a conjecture of Crew on $p$-adic differential equations, analogous to Grothendieck’s local monodromy theorem (also a consequence of results of André and of Mebkhout). Namely, given a finite locally free sheaf on an open $p$-adic annulus with a connection and a compatible Frobenius structure, the module admits a basis over a finite cover of the annulus on which the connection acts via a nilpotent matrix.
DOI : 10.4007/annals.2004.160.93

Kiran S. Kedlaya 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
@article{10_4007_annals_2004_160_93,
     author = {Kiran S. Kedlaya},
     title = {A $p$-adic local monodromy theorem},
     journal = {Annals of mathematics},
     pages = {93--184},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2004},
     doi = {10.4007/annals.2004.160.93},
     mrnumber = {2119719},
     zbl = {1088.14005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.93/}
}
TY  - JOUR
AU  - Kiran S. Kedlaya
TI  - A $p$-adic local monodromy theorem
JO  - Annals of mathematics
PY  - 2004
SP  - 93
EP  - 184
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.93/
DO  - 10.4007/annals.2004.160.93
LA  - en
ID  - 10_4007_annals_2004_160_93
ER  - 
%0 Journal Article
%A Kiran S. Kedlaya
%T A $p$-adic local monodromy theorem
%J Annals of mathematics
%D 2004
%P 93-184
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.93/
%R 10.4007/annals.2004.160.93
%G en
%F 10_4007_annals_2004_160_93
Kiran S. Kedlaya. A $p$-adic local monodromy theorem. Annals of mathematics, Tome 160 (2004) no. 1, pp. 93-184. doi : 10.4007/annals.2004.160.93. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.93/

Cité par Sources :