The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply connected
Annals of mathematics, Tome 160 (2004) no. 2, pp. 573-615.

Voir la notice de l'article provenant de la source Annals of Mathematics website

DOI : 10.4007/annals.2004.160.573

Tobias H. Colding 1 ; William P. Minicozzi II 2

1 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States and Department of Mathematics, Princeton University, Princeton, NJ 08540<br/>United States
2 Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, United States
@article{10_4007_annals_2004_160_573,
     author = {Tobias H. Colding and William P. Minicozzi II},
     title = {The space of embedded minimal surfaces of fixed genus in a 3-manifold {IV;} {Locally} simply connected},
     journal = {Annals of mathematics},
     pages = {573--615},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4007/annals.2004.160.573},
     mrnumber = {2123933},
     zbl = {1076.53069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.573/}
}
TY  - JOUR
AU  - Tobias H. Colding
AU  - William P. Minicozzi II
TI  - The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply connected
JO  - Annals of mathematics
PY  - 2004
SP  - 573
EP  - 615
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.573/
DO  - 10.4007/annals.2004.160.573
LA  - en
ID  - 10_4007_annals_2004_160_573
ER  - 
%0 Journal Article
%A Tobias H. Colding
%A William P. Minicozzi II
%T The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply connected
%J Annals of mathematics
%D 2004
%P 573-615
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.573/
%R 10.4007/annals.2004.160.573
%G en
%F 10_4007_annals_2004_160_573
Tobias H. Colding; William P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply connected. Annals of mathematics, Tome 160 (2004) no. 2, pp. 573-615. doi : 10.4007/annals.2004.160.573. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.573/

Cité par Sources :