The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains
Annals of mathematics, Tome 160 (2004) no. 2, pp. 523-572.

Voir la notice de l'article provenant de la source Annals of Mathematics website

DOI : 10.4007/annals.2004.160.523

Tobias H. Colding 1 ; William P. Minicozzi II 2

1 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States and Department of Mathematics, Princeton University, Princeton, NJ 08540, United States
2 Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, United States
@article{10_4007_annals_2004_160_523,
     author = {Tobias H. Colding and William P. Minicozzi II},
     title = {The space of embedded minimal surfaces of fixed genus in a 3-manifold {III;} {Planar} domains},
     journal = {Annals of mathematics},
     pages = {523--572},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4007/annals.2004.160.523},
     mrnumber = {123932},
     zbl = {1076.53068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.523/}
}
TY  - JOUR
AU  - Tobias H. Colding
AU  - William P. Minicozzi II
TI  - The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains
JO  - Annals of mathematics
PY  - 2004
SP  - 523
EP  - 572
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.523/
DO  - 10.4007/annals.2004.160.523
LA  - en
ID  - 10_4007_annals_2004_160_523
ER  - 
%0 Journal Article
%A Tobias H. Colding
%A William P. Minicozzi II
%T The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains
%J Annals of mathematics
%D 2004
%P 523-572
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.523/
%R 10.4007/annals.2004.160.523
%G en
%F 10_4007_annals_2004_160_523
Tobias H. Colding; William P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains. Annals of mathematics, Tome 160 (2004) no. 2, pp. 523-572. doi : 10.4007/annals.2004.160.523. http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.523/

Cité par Sources :